Loading…
Microstructure and ionic conductivity of Li0.5-xLa0.5(Ti1-xNbx)O3 solid-state electrolytes
•The Li0.5-xLa0.5(Ti1-xNbx)O3 Solid-state Electrolytes are well synthesized.•The bulk ionic conductivity of x = 0.05 sample reaches as high as 0.71 × 10−3 S/cm.•Niobium doping can increase the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion.•Th...
Saved in:
Published in: | Journal of alloys and compounds 2022-03, Vol.896, p.1, Article 163084 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | 1 |
container_title | Journal of alloys and compounds |
container_volume | 896 |
creator | Gu, Rui Kang, Jingrui Guo, Xu Li, Jing Yu, Kun Ma, Ruiping Xu, Zhuo Jin, Li Wei, Xiaoyong |
description | •The Li0.5-xLa0.5(Ti1-xNbx)O3 Solid-state Electrolytes are well synthesized.•The bulk ionic conductivity of x = 0.05 sample reaches as high as 0.71 × 10−3 S/cm.•Niobium doping can increase the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion.•The electronic conductivity of Niobium Doped Li0.5-xLa0.5(Ti1-xNbx)O3 samples are as low as 10−9 S/cm.
Solid electrolytes are critical in the development of solid-state batteries, which have advantages in terms of safety and stability. Lithium Lanthanum Titanate (Li3xLa2/3-xTiO3) is regarded as one of the most favored candidate solid electrolytes. However, the doping dependences of ionic conductivity and microstructure are still poorly understood. In this work, nominal Li0.5-xLa0.5(Ti1-xNbx)O3 (LLTN, x = 0, 0.01, 0.03, 0.05 and 0.07, labelled as LLTN0, LLTN1, LLTN3, LLTN5, LLTN7, respectively) ceramics are synthesized to investigate the above doping effects. The bulk ionic conductivity of LLTN5 sample reaches as high as 0.71 × 10−3 S/cm, which is approximately two times higher than the bulk ionic conductivity of the undoped sample at room temperature. The XRD refinement and Raman results indicate that niobium doping increases the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion. This work suggests that it is effective to enlarge the lattice cell for the improvement of the Li-ion conductivity in LLTO. |
doi_str_mv | 10.1016/j.jallcom.2021.163084 |
format | article |
fullrecord | <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_journals_2637667010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838821044947</els_id><sourcerecordid>2637667010</sourcerecordid><originalsourceid>FETCH-LOGICAL-e239t-9fd543e55cf6a58de76d5e1fd53d0f95d15dc9c2f0f08776566f39f4134db7f63</originalsourceid><addsrcrecordid>eNotkM9LwzAcxYMoOKd_glDwoofUpGnS5iQy5g-o7jIvXkKXfAMptdEkHdt_b8d2evB4vPf4IHRLSU4JFY9d3rV9r_1PXpCC5lQwUpdnaEbriuFSCHmOZkQWHNesri_RVYwdIYRKRmfo-8Pp4GMKo05jgKwdTOb84HSm_WAm021d2mfeZo0jOce7pp3kfu0o3n1udg8rlkXfO4NjahNk0INOwff7BPEaXdi2j3Bz0jn6elmuF2-4Wb2-L54bDAWTCUtreMmAc21Fy2sDlTAc6OQyQ6zkhnKjpS4ssaSuKsGFsEzakrLSbCor2BzdHXt_g_8bISbV-TEM06QqBKuEqAglU-rpmILpytZBUFE7GDQYF6bPyninKFEHoKpTJ6DqAFQdgbJ_yqNr1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637667010</pqid></control><display><type>article</type><title>Microstructure and ionic conductivity of Li0.5-xLa0.5(Ti1-xNbx)O3 solid-state electrolytes</title><source>ScienceDirect Journals</source><creator>Gu, Rui ; Kang, Jingrui ; Guo, Xu ; Li, Jing ; Yu, Kun ; Ma, Ruiping ; Xu, Zhuo ; Jin, Li ; Wei, Xiaoyong</creator><creatorcontrib>Gu, Rui ; Kang, Jingrui ; Guo, Xu ; Li, Jing ; Yu, Kun ; Ma, Ruiping ; Xu, Zhuo ; Jin, Li ; Wei, Xiaoyong</creatorcontrib><description>•The Li0.5-xLa0.5(Ti1-xNbx)O3 Solid-state Electrolytes are well synthesized.•The bulk ionic conductivity of x = 0.05 sample reaches as high as 0.71 × 10−3 S/cm.•Niobium doping can increase the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion.•The electronic conductivity of Niobium Doped Li0.5-xLa0.5(Ti1-xNbx)O3 samples are as low as 10−9 S/cm.
Solid electrolytes are critical in the development of solid-state batteries, which have advantages in terms of safety and stability. Lithium Lanthanum Titanate (Li3xLa2/3-xTiO3) is regarded as one of the most favored candidate solid electrolytes. However, the doping dependences of ionic conductivity and microstructure are still poorly understood. In this work, nominal Li0.5-xLa0.5(Ti1-xNbx)O3 (LLTN, x = 0, 0.01, 0.03, 0.05 and 0.07, labelled as LLTN0, LLTN1, LLTN3, LLTN5, LLTN7, respectively) ceramics are synthesized to investigate the above doping effects. The bulk ionic conductivity of LLTN5 sample reaches as high as 0.71 × 10−3 S/cm, which is approximately two times higher than the bulk ionic conductivity of the undoped sample at room temperature. The XRD refinement and Raman results indicate that niobium doping increases the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion. This work suggests that it is effective to enlarge the lattice cell for the improvement of the Li-ion conductivity in LLTO.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2021.163084</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Bulk sampling ; Doping ; Electrolytes ; Ion currents ; Ions ; Lanthanum ; Li3xLa2/3-xTiO3 ; Lithium ; Lithium ions ; Microstructure ; Molten salt electrolytes ; Niobium ; Niobium doping ; Room temperature ; Solid electrolyte ; Solid electrolytes ; Solid state</subject><ispartof>Journal of alloys and compounds, 2022-03, Vol.896, p.1, Article 163084</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 10, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gu, Rui</creatorcontrib><creatorcontrib>Kang, Jingrui</creatorcontrib><creatorcontrib>Guo, Xu</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Yu, Kun</creatorcontrib><creatorcontrib>Ma, Ruiping</creatorcontrib><creatorcontrib>Xu, Zhuo</creatorcontrib><creatorcontrib>Jin, Li</creatorcontrib><creatorcontrib>Wei, Xiaoyong</creatorcontrib><title>Microstructure and ionic conductivity of Li0.5-xLa0.5(Ti1-xNbx)O3 solid-state electrolytes</title><title>Journal of alloys and compounds</title><description>•The Li0.5-xLa0.5(Ti1-xNbx)O3 Solid-state Electrolytes are well synthesized.•The bulk ionic conductivity of x = 0.05 sample reaches as high as 0.71 × 10−3 S/cm.•Niobium doping can increase the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion.•The electronic conductivity of Niobium Doped Li0.5-xLa0.5(Ti1-xNbx)O3 samples are as low as 10−9 S/cm.
Solid electrolytes are critical in the development of solid-state batteries, which have advantages in terms of safety and stability. Lithium Lanthanum Titanate (Li3xLa2/3-xTiO3) is regarded as one of the most favored candidate solid electrolytes. However, the doping dependences of ionic conductivity and microstructure are still poorly understood. In this work, nominal Li0.5-xLa0.5(Ti1-xNbx)O3 (LLTN, x = 0, 0.01, 0.03, 0.05 and 0.07, labelled as LLTN0, LLTN1, LLTN3, LLTN5, LLTN7, respectively) ceramics are synthesized to investigate the above doping effects. The bulk ionic conductivity of LLTN5 sample reaches as high as 0.71 × 10−3 S/cm, which is approximately two times higher than the bulk ionic conductivity of the undoped sample at room temperature. The XRD refinement and Raman results indicate that niobium doping increases the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion. This work suggests that it is effective to enlarge the lattice cell for the improvement of the Li-ion conductivity in LLTO.</description><subject>Bulk sampling</subject><subject>Doping</subject><subject>Electrolytes</subject><subject>Ion currents</subject><subject>Ions</subject><subject>Lanthanum</subject><subject>Li3xLa2/3-xTiO3</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Microstructure</subject><subject>Molten salt electrolytes</subject><subject>Niobium</subject><subject>Niobium doping</subject><subject>Room temperature</subject><subject>Solid electrolyte</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkM9LwzAcxYMoOKd_glDwoofUpGnS5iQy5g-o7jIvXkKXfAMptdEkHdt_b8d2evB4vPf4IHRLSU4JFY9d3rV9r_1PXpCC5lQwUpdnaEbriuFSCHmOZkQWHNesri_RVYwdIYRKRmfo-8Pp4GMKo05jgKwdTOb84HSm_WAm021d2mfeZo0jOce7pp3kfu0o3n1udg8rlkXfO4NjahNk0INOwff7BPEaXdi2j3Bz0jn6elmuF2-4Wb2-L54bDAWTCUtreMmAc21Fy2sDlTAc6OQyQ6zkhnKjpS4ssaSuKsGFsEzakrLSbCor2BzdHXt_g_8bISbV-TEM06QqBKuEqAglU-rpmILpytZBUFE7GDQYF6bPyninKFEHoKpTJ6DqAFQdgbJ_yqNr1Q</recordid><startdate>20220310</startdate><enddate>20220310</enddate><creator>Gu, Rui</creator><creator>Kang, Jingrui</creator><creator>Guo, Xu</creator><creator>Li, Jing</creator><creator>Yu, Kun</creator><creator>Ma, Ruiping</creator><creator>Xu, Zhuo</creator><creator>Jin, Li</creator><creator>Wei, Xiaoyong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220310</creationdate><title>Microstructure and ionic conductivity of Li0.5-xLa0.5(Ti1-xNbx)O3 solid-state electrolytes</title><author>Gu, Rui ; Kang, Jingrui ; Guo, Xu ; Li, Jing ; Yu, Kun ; Ma, Ruiping ; Xu, Zhuo ; Jin, Li ; Wei, Xiaoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e239t-9fd543e55cf6a58de76d5e1fd53d0f95d15dc9c2f0f08776566f39f4134db7f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bulk sampling</topic><topic>Doping</topic><topic>Electrolytes</topic><topic>Ion currents</topic><topic>Ions</topic><topic>Lanthanum</topic><topic>Li3xLa2/3-xTiO3</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Microstructure</topic><topic>Molten salt electrolytes</topic><topic>Niobium</topic><topic>Niobium doping</topic><topic>Room temperature</topic><topic>Solid electrolyte</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Rui</creatorcontrib><creatorcontrib>Kang, Jingrui</creatorcontrib><creatorcontrib>Guo, Xu</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Yu, Kun</creatorcontrib><creatorcontrib>Ma, Ruiping</creatorcontrib><creatorcontrib>Xu, Zhuo</creatorcontrib><creatorcontrib>Jin, Li</creatorcontrib><creatorcontrib>Wei, Xiaoyong</creatorcontrib><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Rui</au><au>Kang, Jingrui</au><au>Guo, Xu</au><au>Li, Jing</au><au>Yu, Kun</au><au>Ma, Ruiping</au><au>Xu, Zhuo</au><au>Jin, Li</au><au>Wei, Xiaoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and ionic conductivity of Li0.5-xLa0.5(Ti1-xNbx)O3 solid-state electrolytes</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-03-10</date><risdate>2022</risdate><volume>896</volume><spage>1</spage><pages>1-</pages><artnum>163084</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•The Li0.5-xLa0.5(Ti1-xNbx)O3 Solid-state Electrolytes are well synthesized.•The bulk ionic conductivity of x = 0.05 sample reaches as high as 0.71 × 10−3 S/cm.•Niobium doping can increase the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion.•The electronic conductivity of Niobium Doped Li0.5-xLa0.5(Ti1-xNbx)O3 samples are as low as 10−9 S/cm.
Solid electrolytes are critical in the development of solid-state batteries, which have advantages in terms of safety and stability. Lithium Lanthanum Titanate (Li3xLa2/3-xTiO3) is regarded as one of the most favored candidate solid electrolytes. However, the doping dependences of ionic conductivity and microstructure are still poorly understood. In this work, nominal Li0.5-xLa0.5(Ti1-xNbx)O3 (LLTN, x = 0, 0.01, 0.03, 0.05 and 0.07, labelled as LLTN0, LLTN1, LLTN3, LLTN5, LLTN7, respectively) ceramics are synthesized to investigate the above doping effects. The bulk ionic conductivity of LLTN5 sample reaches as high as 0.71 × 10−3 S/cm, which is approximately two times higher than the bulk ionic conductivity of the undoped sample at room temperature. The XRD refinement and Raman results indicate that niobium doping increases the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion. This work suggests that it is effective to enlarge the lattice cell for the improvement of the Li-ion conductivity in LLTO.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2021.163084</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2022-03, Vol.896, p.1, Article 163084 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2637667010 |
source | ScienceDirect Journals |
subjects | Bulk sampling Doping Electrolytes Ion currents Ions Lanthanum Li3xLa2/3-xTiO3 Lithium Lithium ions Microstructure Molten salt electrolytes Niobium Niobium doping Room temperature Solid electrolyte Solid electrolytes Solid state |
title | Microstructure and ionic conductivity of Li0.5-xLa0.5(Ti1-xNbx)O3 solid-state electrolytes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20ionic%20conductivity%20of%20Li0.5-xLa0.5(Ti1-xNbx)O3%20solid-state%20electrolytes&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Gu,%20Rui&rft.date=2022-03-10&rft.volume=896&rft.spage=1&rft.pages=1-&rft.artnum=163084&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2021.163084&rft_dat=%3Cproquest_elsev%3E2637667010%3C/proquest_elsev%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e239t-9fd543e55cf6a58de76d5e1fd53d0f95d15dc9c2f0f08776566f39f4134db7f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637667010&rft_id=info:pmid/&rfr_iscdi=true |