Loading…

Microstructure and ionic conductivity of Li0.5-xLa0.5(Ti1-xNbx)O3 solid-state electrolytes

•The Li0.5-xLa0.5(Ti1-xNbx)O3 Solid-state Electrolytes are well synthesized.•The bulk ionic conductivity of x = 0.05 sample reaches as high as 0.71 × 10−3 S/cm.•Niobium doping can increase the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion.•Th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2022-03, Vol.896, p.1, Article 163084
Main Authors: Gu, Rui, Kang, Jingrui, Guo, Xu, Li, Jing, Yu, Kun, Ma, Ruiping, Xu, Zhuo, Jin, Li, Wei, Xiaoyong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 1
container_title Journal of alloys and compounds
container_volume 896
creator Gu, Rui
Kang, Jingrui
Guo, Xu
Li, Jing
Yu, Kun
Ma, Ruiping
Xu, Zhuo
Jin, Li
Wei, Xiaoyong
description •The Li0.5-xLa0.5(Ti1-xNbx)O3 Solid-state Electrolytes are well synthesized.•The bulk ionic conductivity of x = 0.05 sample reaches as high as 0.71 × 10−3 S/cm.•Niobium doping can increase the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion.•The electronic conductivity of Niobium Doped Li0.5-xLa0.5(Ti1-xNbx)O3 samples are as low as 10−9 S/cm. Solid electrolytes are critical in the development of solid-state batteries, which have advantages in terms of safety and stability. Lithium Lanthanum Titanate (Li3xLa2/3-xTiO3) is regarded as one of the most favored candidate solid electrolytes. However, the doping dependences of ionic conductivity and microstructure are still poorly understood. In this work, nominal Li0.5-xLa0.5(Ti1-xNbx)O3 (LLTN, x = 0, 0.01, 0.03, 0.05 and 0.07, labelled as LLTN0, LLTN1, LLTN3, LLTN5, LLTN7, respectively) ceramics are synthesized to investigate the above doping effects. The bulk ionic conductivity of LLTN5 sample reaches as high as 0.71 × 10−3 S/cm, which is approximately two times higher than the bulk ionic conductivity of the undoped sample at room temperature. The XRD refinement and Raman results indicate that niobium doping increases the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion. This work suggests that it is effective to enlarge the lattice cell for the improvement of the Li-ion conductivity in LLTO.
doi_str_mv 10.1016/j.jallcom.2021.163084
format article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_journals_2637667010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838821044947</els_id><sourcerecordid>2637667010</sourcerecordid><originalsourceid>FETCH-LOGICAL-e239t-9fd543e55cf6a58de76d5e1fd53d0f95d15dc9c2f0f08776566f39f4134db7f63</originalsourceid><addsrcrecordid>eNotkM9LwzAcxYMoOKd_glDwoofUpGnS5iQy5g-o7jIvXkKXfAMptdEkHdt_b8d2evB4vPf4IHRLSU4JFY9d3rV9r_1PXpCC5lQwUpdnaEbriuFSCHmOZkQWHNesri_RVYwdIYRKRmfo-8Pp4GMKo05jgKwdTOb84HSm_WAm021d2mfeZo0jOce7pp3kfu0o3n1udg8rlkXfO4NjahNk0INOwff7BPEaXdi2j3Bz0jn6elmuF2-4Wb2-L54bDAWTCUtreMmAc21Fy2sDlTAc6OQyQ6zkhnKjpS4ssaSuKsGFsEzakrLSbCor2BzdHXt_g_8bISbV-TEM06QqBKuEqAglU-rpmILpytZBUFE7GDQYF6bPyninKFEHoKpTJ6DqAFQdgbJ_yqNr1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637667010</pqid></control><display><type>article</type><title>Microstructure and ionic conductivity of Li0.5-xLa0.5(Ti1-xNbx)O3 solid-state electrolytes</title><source>ScienceDirect Journals</source><creator>Gu, Rui ; Kang, Jingrui ; Guo, Xu ; Li, Jing ; Yu, Kun ; Ma, Ruiping ; Xu, Zhuo ; Jin, Li ; Wei, Xiaoyong</creator><creatorcontrib>Gu, Rui ; Kang, Jingrui ; Guo, Xu ; Li, Jing ; Yu, Kun ; Ma, Ruiping ; Xu, Zhuo ; Jin, Li ; Wei, Xiaoyong</creatorcontrib><description>•The Li0.5-xLa0.5(Ti1-xNbx)O3 Solid-state Electrolytes are well synthesized.•The bulk ionic conductivity of x = 0.05 sample reaches as high as 0.71 × 10−3 S/cm.•Niobium doping can increase the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion.•The electronic conductivity of Niobium Doped Li0.5-xLa0.5(Ti1-xNbx)O3 samples are as low as 10−9 S/cm. Solid electrolytes are critical in the development of solid-state batteries, which have advantages in terms of safety and stability. Lithium Lanthanum Titanate (Li3xLa2/3-xTiO3) is regarded as one of the most favored candidate solid electrolytes. However, the doping dependences of ionic conductivity and microstructure are still poorly understood. In this work, nominal Li0.5-xLa0.5(Ti1-xNbx)O3 (LLTN, x = 0, 0.01, 0.03, 0.05 and 0.07, labelled as LLTN0, LLTN1, LLTN3, LLTN5, LLTN7, respectively) ceramics are synthesized to investigate the above doping effects. The bulk ionic conductivity of LLTN5 sample reaches as high as 0.71 × 10−3 S/cm, which is approximately two times higher than the bulk ionic conductivity of the undoped sample at room temperature. The XRD refinement and Raman results indicate that niobium doping increases the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion. This work suggests that it is effective to enlarge the lattice cell for the improvement of the Li-ion conductivity in LLTO.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2021.163084</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Bulk sampling ; Doping ; Electrolytes ; Ion currents ; Ions ; Lanthanum ; Li3xLa2/3-xTiO3 ; Lithium ; Lithium ions ; Microstructure ; Molten salt electrolytes ; Niobium ; Niobium doping ; Room temperature ; Solid electrolyte ; Solid electrolytes ; Solid state</subject><ispartof>Journal of alloys and compounds, 2022-03, Vol.896, p.1, Article 163084</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 10, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gu, Rui</creatorcontrib><creatorcontrib>Kang, Jingrui</creatorcontrib><creatorcontrib>Guo, Xu</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Yu, Kun</creatorcontrib><creatorcontrib>Ma, Ruiping</creatorcontrib><creatorcontrib>Xu, Zhuo</creatorcontrib><creatorcontrib>Jin, Li</creatorcontrib><creatorcontrib>Wei, Xiaoyong</creatorcontrib><title>Microstructure and ionic conductivity of Li0.5-xLa0.5(Ti1-xNbx)O3 solid-state electrolytes</title><title>Journal of alloys and compounds</title><description>•The Li0.5-xLa0.5(Ti1-xNbx)O3 Solid-state Electrolytes are well synthesized.•The bulk ionic conductivity of x = 0.05 sample reaches as high as 0.71 × 10−3 S/cm.•Niobium doping can increase the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion.•The electronic conductivity of Niobium Doped Li0.5-xLa0.5(Ti1-xNbx)O3 samples are as low as 10−9 S/cm. Solid electrolytes are critical in the development of solid-state batteries, which have advantages in terms of safety and stability. Lithium Lanthanum Titanate (Li3xLa2/3-xTiO3) is regarded as one of the most favored candidate solid electrolytes. However, the doping dependences of ionic conductivity and microstructure are still poorly understood. In this work, nominal Li0.5-xLa0.5(Ti1-xNbx)O3 (LLTN, x = 0, 0.01, 0.03, 0.05 and 0.07, labelled as LLTN0, LLTN1, LLTN3, LLTN5, LLTN7, respectively) ceramics are synthesized to investigate the above doping effects. The bulk ionic conductivity of LLTN5 sample reaches as high as 0.71 × 10−3 S/cm, which is approximately two times higher than the bulk ionic conductivity of the undoped sample at room temperature. The XRD refinement and Raman results indicate that niobium doping increases the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion. This work suggests that it is effective to enlarge the lattice cell for the improvement of the Li-ion conductivity in LLTO.</description><subject>Bulk sampling</subject><subject>Doping</subject><subject>Electrolytes</subject><subject>Ion currents</subject><subject>Ions</subject><subject>Lanthanum</subject><subject>Li3xLa2/3-xTiO3</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Microstructure</subject><subject>Molten salt electrolytes</subject><subject>Niobium</subject><subject>Niobium doping</subject><subject>Room temperature</subject><subject>Solid electrolyte</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkM9LwzAcxYMoOKd_glDwoofUpGnS5iQy5g-o7jIvXkKXfAMptdEkHdt_b8d2evB4vPf4IHRLSU4JFY9d3rV9r_1PXpCC5lQwUpdnaEbriuFSCHmOZkQWHNesri_RVYwdIYRKRmfo-8Pp4GMKo05jgKwdTOb84HSm_WAm021d2mfeZo0jOce7pp3kfu0o3n1udg8rlkXfO4NjahNk0INOwff7BPEaXdi2j3Bz0jn6elmuF2-4Wb2-L54bDAWTCUtreMmAc21Fy2sDlTAc6OQyQ6zkhnKjpS4ssaSuKsGFsEzakrLSbCor2BzdHXt_g_8bISbV-TEM06QqBKuEqAglU-rpmILpytZBUFE7GDQYF6bPyninKFEHoKpTJ6DqAFQdgbJ_yqNr1Q</recordid><startdate>20220310</startdate><enddate>20220310</enddate><creator>Gu, Rui</creator><creator>Kang, Jingrui</creator><creator>Guo, Xu</creator><creator>Li, Jing</creator><creator>Yu, Kun</creator><creator>Ma, Ruiping</creator><creator>Xu, Zhuo</creator><creator>Jin, Li</creator><creator>Wei, Xiaoyong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220310</creationdate><title>Microstructure and ionic conductivity of Li0.5-xLa0.5(Ti1-xNbx)O3 solid-state electrolytes</title><author>Gu, Rui ; Kang, Jingrui ; Guo, Xu ; Li, Jing ; Yu, Kun ; Ma, Ruiping ; Xu, Zhuo ; Jin, Li ; Wei, Xiaoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e239t-9fd543e55cf6a58de76d5e1fd53d0f95d15dc9c2f0f08776566f39f4134db7f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bulk sampling</topic><topic>Doping</topic><topic>Electrolytes</topic><topic>Ion currents</topic><topic>Ions</topic><topic>Lanthanum</topic><topic>Li3xLa2/3-xTiO3</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Microstructure</topic><topic>Molten salt electrolytes</topic><topic>Niobium</topic><topic>Niobium doping</topic><topic>Room temperature</topic><topic>Solid electrolyte</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Rui</creatorcontrib><creatorcontrib>Kang, Jingrui</creatorcontrib><creatorcontrib>Guo, Xu</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Yu, Kun</creatorcontrib><creatorcontrib>Ma, Ruiping</creatorcontrib><creatorcontrib>Xu, Zhuo</creatorcontrib><creatorcontrib>Jin, Li</creatorcontrib><creatorcontrib>Wei, Xiaoyong</creatorcontrib><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Rui</au><au>Kang, Jingrui</au><au>Guo, Xu</au><au>Li, Jing</au><au>Yu, Kun</au><au>Ma, Ruiping</au><au>Xu, Zhuo</au><au>Jin, Li</au><au>Wei, Xiaoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and ionic conductivity of Li0.5-xLa0.5(Ti1-xNbx)O3 solid-state electrolytes</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-03-10</date><risdate>2022</risdate><volume>896</volume><spage>1</spage><pages>1-</pages><artnum>163084</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•The Li0.5-xLa0.5(Ti1-xNbx)O3 Solid-state Electrolytes are well synthesized.•The bulk ionic conductivity of x = 0.05 sample reaches as high as 0.71 × 10−3 S/cm.•Niobium doping can increase the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion.•The electronic conductivity of Niobium Doped Li0.5-xLa0.5(Ti1-xNbx)O3 samples are as low as 10−9 S/cm. Solid electrolytes are critical in the development of solid-state batteries, which have advantages in terms of safety and stability. Lithium Lanthanum Titanate (Li3xLa2/3-xTiO3) is regarded as one of the most favored candidate solid electrolytes. However, the doping dependences of ionic conductivity and microstructure are still poorly understood. In this work, nominal Li0.5-xLa0.5(Ti1-xNbx)O3 (LLTN, x = 0, 0.01, 0.03, 0.05 and 0.07, labelled as LLTN0, LLTN1, LLTN3, LLTN5, LLTN7, respectively) ceramics are synthesized to investigate the above doping effects. The bulk ionic conductivity of LLTN5 sample reaches as high as 0.71 × 10−3 S/cm, which is approximately two times higher than the bulk ionic conductivity of the undoped sample at room temperature. The XRD refinement and Raman results indicate that niobium doping increases the lattice cell along the c-axis and stretch the TiO bond, which extends the tunnels for Li-ions diffusion. This work suggests that it is effective to enlarge the lattice cell for the improvement of the Li-ion conductivity in LLTO.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2021.163084</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2022-03, Vol.896, p.1, Article 163084
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2637667010
source ScienceDirect Journals
subjects Bulk sampling
Doping
Electrolytes
Ion currents
Ions
Lanthanum
Li3xLa2/3-xTiO3
Lithium
Lithium ions
Microstructure
Molten salt electrolytes
Niobium
Niobium doping
Room temperature
Solid electrolyte
Solid electrolytes
Solid state
title Microstructure and ionic conductivity of Li0.5-xLa0.5(Ti1-xNbx)O3 solid-state electrolytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20ionic%20conductivity%20of%20Li0.5-xLa0.5(Ti1-xNbx)O3%20solid-state%20electrolytes&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Gu,%20Rui&rft.date=2022-03-10&rft.volume=896&rft.spage=1&rft.pages=1-&rft.artnum=163084&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2021.163084&rft_dat=%3Cproquest_elsev%3E2637667010%3C/proquest_elsev%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e239t-9fd543e55cf6a58de76d5e1fd53d0f95d15dc9c2f0f08776566f39f4134db7f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637667010&rft_id=info:pmid/&rfr_iscdi=true