Loading…
Adsorption of Methylene Blue by Biosorption on Alkali-Treated Solanum incanum: Isotherms, Equilibrium and Mechanism
In this study, a new bio-adsorbent (NASIF) was successfully prepared via chemical activation of Solanum incanum (SI) with hydrogen peroxide and sodium hydroxide reagents as an inexpensive and effective adsorbent for the removal of methylene blue (MB) from aqueous media. The morphology of the NASIF a...
Saved in:
Published in: | Sustainability 2022-03, Vol.14 (5), p.2644 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, a new bio-adsorbent (NASIF) was successfully prepared via chemical activation of Solanum incanum (SI) with hydrogen peroxide and sodium hydroxide reagents as an inexpensive and effective adsorbent for the removal of methylene blue (MB) from aqueous media. The morphology of the NASIF adsorbent surface and the nature of the potential MB interactions were examined by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) micrograph. FTIR results suggested that carboxyl, carbonyl, and hydroxyl groups were involved in MB adsorption on the NASIF surface. EDX analysis confirmed the successful increase of oxygen-containing functional groups during the chemical activation. The influence of important factors was studied using the batch method. The results revealed that the maximum removal efficiency was 98% at contact time: 120 min; pH: 6.5, adsorbent dose: 40 mg; and temperature-25 °C. Isothermal behavior was evaluated using three non-linear isotherm models, Langmuir, Freundlich, and D–R isotherm. MB adsorption onto NASIF adsorbent followed the Langmuir isotherm model with maximum monolayer capacity (mg/g) at 25 °C. Meanwhile, the PSO kinetics model was found to be better than PFO kinetic model for describing the adsorption process using kinetic models. Based on the D–R model, the free energy (E, kJ mol−1) values were in the range of 0.090–0.1812 kJ mol−1, which indicated that the MB adsorption onto NASIF may belong to physical adsorption. The adsorption mechanism of MB onto NASIF adsorbent mainly includes electrostatic attraction, π-π interaction, n-π interaction, and H-bonding. The thermodynamic parameters revealed that the adsorption process was a feasibility, spontaneous and exothermic process. Finally, the result of the present work could provide strong evidence of the potential of NASIF adsorbent for eliminating MB from aqueous media. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su14052644 |