Loading…

Finding Steady Poiseuille-Type Flows for Incompressible Polymeric Fluids by the Relaxation Method

Stabilization of flows of an incompressible viscoelastic polymeric fluid in a channel with a rectangular cross section under the action of a constant pressure drop is analyzed numerically. The flows are described within the Pokrovskii–Vinogradov rheological mesoscopic model. An algorithm for solving...

Full description

Saved in:
Bibliographic Details
Published in:Computational mathematics and mathematical physics 2022-02, Vol.62 (2), p.302-315
Main Authors: Blokhin, A. M., Semisalov, B. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-bfef7b6b506ee54d467ee6d0199710254072ef8dbb9290f0b418924ba9b071873
cites cdi_FETCH-LOGICAL-c316t-bfef7b6b506ee54d467ee6d0199710254072ef8dbb9290f0b418924ba9b071873
container_end_page 315
container_issue 2
container_start_page 302
container_title Computational mathematics and mathematical physics
container_volume 62
creator Blokhin, A. M.
Semisalov, B. V.
description Stabilization of flows of an incompressible viscoelastic polymeric fluid in a channel with a rectangular cross section under the action of a constant pressure drop is analyzed numerically. The flows are described within the Pokrovskii–Vinogradov rheological mesoscopic model. An algorithm for solving initial-boundary value problems for nonstationary equations of the model is developed. It uses spatial interpolations with Chebyshev nodes and implicit time integration scheme. It is shown analytically that, in the steady state, the model admits three highly smooth solutions. The question of which of these solutions is realized in practice is investigated by calculating the limit of the solutions of nonstationary equations. It is found that this limit coincides, with high accuracy, with one of the three solutions of the steady-state problem, and the values of parameters at which the switching from one of these solutions to another occurs are calculated.
doi_str_mv 10.1134/S0965542522020051
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638061103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638061103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bfef7b6b506ee54d467ee6d0199710254072ef8dbb9290f0b418924ba9b071873</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKc_wLeAz9WbtEmbRxlOBxPFzeeStLdbRtfUpEX77-2Y4IP4dB_O950Lh5BrBreMxcndCpQUIuGCc-AAgp2QCRNCRFJKfkomhzg65OfkIoQdAJMqiydEz21T2mZDVx3qcqCvzgbsbV1jtB5apPPafQZaOU8XTeH2rccQrKlxBOthj94WI9LbMlAz0G6L9A1r_aU76xr6jN3WlZfkrNJ1wKufOyXv84f17ClavjwuZvfLqIiZ7CJTYZUaaQRIRJGUiUwRZQlMqZQBFwmkHKusNEZxBRWYhGWKJ0YrAynL0nhKbo69rXcfPYYu37neN-PLnMs4A8kYxCPFjlThXQgeq7z1dq_9kDPID0vmf5YcHX50wsg2G_S_zf9L35rodOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638061103</pqid></control><display><type>article</type><title>Finding Steady Poiseuille-Type Flows for Incompressible Polymeric Fluids by the Relaxation Method</title><source>Springer Link</source><creator>Blokhin, A. M. ; Semisalov, B. V.</creator><creatorcontrib>Blokhin, A. M. ; Semisalov, B. V.</creatorcontrib><description>Stabilization of flows of an incompressible viscoelastic polymeric fluid in a channel with a rectangular cross section under the action of a constant pressure drop is analyzed numerically. The flows are described within the Pokrovskii–Vinogradov rheological mesoscopic model. An algorithm for solving initial-boundary value problems for nonstationary equations of the model is developed. It uses spatial interpolations with Chebyshev nodes and implicit time integration scheme. It is shown analytically that, in the steady state, the model admits three highly smooth solutions. The question of which of these solutions is realized in practice is investigated by calculating the limit of the solutions of nonstationary equations. It is found that this limit coincides, with high accuracy, with one of the three solutions of the steady-state problem, and the values of parameters at which the switching from one of these solutions to another occurs are calculated.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542522020051</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Boundary value problems ; Chebyshev approximation ; Computational Mathematics and Numerical Analysis ; Fluid flow ; Incompressible flow ; Mathematical models ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Pressure drop ; Relaxation method (mathematics) ; Rheological properties ; Steady state models ; Time integration</subject><ispartof>Computational mathematics and mathematical physics, 2022-02, Vol.62 (2), p.302-315</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2022, Vol. 62, No. 2, pp. 302–315. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2022, Vol. 62, No. 2, pp. 305–319.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bfef7b6b506ee54d467ee6d0199710254072ef8dbb9290f0b418924ba9b071873</citedby><cites>FETCH-LOGICAL-c316t-bfef7b6b506ee54d467ee6d0199710254072ef8dbb9290f0b418924ba9b071873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Blokhin, A. M.</creatorcontrib><creatorcontrib>Semisalov, B. V.</creatorcontrib><title>Finding Steady Poiseuille-Type Flows for Incompressible Polymeric Fluids by the Relaxation Method</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>Stabilization of flows of an incompressible viscoelastic polymeric fluid in a channel with a rectangular cross section under the action of a constant pressure drop is analyzed numerically. The flows are described within the Pokrovskii–Vinogradov rheological mesoscopic model. An algorithm for solving initial-boundary value problems for nonstationary equations of the model is developed. It uses spatial interpolations with Chebyshev nodes and implicit time integration scheme. It is shown analytically that, in the steady state, the model admits three highly smooth solutions. The question of which of these solutions is realized in practice is investigated by calculating the limit of the solutions of nonstationary equations. It is found that this limit coincides, with high accuracy, with one of the three solutions of the steady-state problem, and the values of parameters at which the switching from one of these solutions to another occurs are calculated.</description><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Chebyshev approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Mathematical models</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Pressure drop</subject><subject>Relaxation method (mathematics)</subject><subject>Rheological properties</subject><subject>Steady state models</subject><subject>Time integration</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAUhYMoOKc_wLeAz9WbtEmbRxlOBxPFzeeStLdbRtfUpEX77-2Y4IP4dB_O950Lh5BrBreMxcndCpQUIuGCc-AAgp2QCRNCRFJKfkomhzg65OfkIoQdAJMqiydEz21T2mZDVx3qcqCvzgbsbV1jtB5apPPafQZaOU8XTeH2rccQrKlxBOthj94WI9LbMlAz0G6L9A1r_aU76xr6jN3WlZfkrNJ1wKufOyXv84f17ClavjwuZvfLqIiZ7CJTYZUaaQRIRJGUiUwRZQlMqZQBFwmkHKusNEZxBRWYhGWKJ0YrAynL0nhKbo69rXcfPYYu37neN-PLnMs4A8kYxCPFjlThXQgeq7z1dq_9kDPID0vmf5YcHX50wsg2G_S_zf9L35rodOo</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Blokhin, A. M.</creator><creator>Semisalov, B. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220201</creationdate><title>Finding Steady Poiseuille-Type Flows for Incompressible Polymeric Fluids by the Relaxation Method</title><author>Blokhin, A. M. ; Semisalov, B. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bfef7b6b506ee54d467ee6d0199710254072ef8dbb9290f0b418924ba9b071873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Chebyshev approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Mathematical models</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Pressure drop</topic><topic>Relaxation method (mathematics)</topic><topic>Rheological properties</topic><topic>Steady state models</topic><topic>Time integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blokhin, A. M.</creatorcontrib><creatorcontrib>Semisalov, B. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blokhin, A. M.</au><au>Semisalov, B. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding Steady Poiseuille-Type Flows for Incompressible Polymeric Fluids by the Relaxation Method</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>62</volume><issue>2</issue><spage>302</spage><epage>315</epage><pages>302-315</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>Stabilization of flows of an incompressible viscoelastic polymeric fluid in a channel with a rectangular cross section under the action of a constant pressure drop is analyzed numerically. The flows are described within the Pokrovskii–Vinogradov rheological mesoscopic model. An algorithm for solving initial-boundary value problems for nonstationary equations of the model is developed. It uses spatial interpolations with Chebyshev nodes and implicit time integration scheme. It is shown analytically that, in the steady state, the model admits three highly smooth solutions. The question of which of these solutions is realized in practice is investigated by calculating the limit of the solutions of nonstationary equations. It is found that this limit coincides, with high accuracy, with one of the three solutions of the steady-state problem, and the values of parameters at which the switching from one of these solutions to another occurs are calculated.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542522020051</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2022-02, Vol.62 (2), p.302-315
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_2638061103
source Springer Link
subjects Algorithms
Boundary value problems
Chebyshev approximation
Computational Mathematics and Numerical Analysis
Fluid flow
Incompressible flow
Mathematical models
Mathematical Physics
Mathematics
Mathematics and Statistics
Pressure drop
Relaxation method (mathematics)
Rheological properties
Steady state models
Time integration
title Finding Steady Poiseuille-Type Flows for Incompressible Polymeric Fluids by the Relaxation Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20Steady%20Poiseuille-Type%20Flows%20for%20Incompressible%20Polymeric%20Fluids%20by%20the%20Relaxation%20Method&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Blokhin,%20A.%20M.&rft.date=2022-02-01&rft.volume=62&rft.issue=2&rft.spage=302&rft.epage=315&rft.pages=302-315&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542522020051&rft_dat=%3Cproquest_cross%3E2638061103%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-bfef7b6b506ee54d467ee6d0199710254072ef8dbb9290f0b418924ba9b071873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638061103&rft_id=info:pmid/&rfr_iscdi=true