Loading…
Finding Steady Poiseuille-Type Flows for Incompressible Polymeric Fluids by the Relaxation Method
Stabilization of flows of an incompressible viscoelastic polymeric fluid in a channel with a rectangular cross section under the action of a constant pressure drop is analyzed numerically. The flows are described within the Pokrovskii–Vinogradov rheological mesoscopic model. An algorithm for solving...
Saved in:
Published in: | Computational mathematics and mathematical physics 2022-02, Vol.62 (2), p.302-315 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-bfef7b6b506ee54d467ee6d0199710254072ef8dbb9290f0b418924ba9b071873 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-bfef7b6b506ee54d467ee6d0199710254072ef8dbb9290f0b418924ba9b071873 |
container_end_page | 315 |
container_issue | 2 |
container_start_page | 302 |
container_title | Computational mathematics and mathematical physics |
container_volume | 62 |
creator | Blokhin, A. M. Semisalov, B. V. |
description | Stabilization of flows of an incompressible viscoelastic polymeric fluid in a channel with a rectangular cross section under the action of a constant pressure drop is analyzed numerically. The flows are described within the Pokrovskii–Vinogradov rheological mesoscopic model. An algorithm for solving initial-boundary value problems for nonstationary equations of the model is developed. It uses spatial interpolations with Chebyshev nodes and implicit time integration scheme. It is shown analytically that, in the steady state, the model admits three highly smooth solutions. The question of which of these solutions is realized in practice is investigated by calculating the limit of the solutions of nonstationary equations. It is found that this limit coincides, with high accuracy, with one of the three solutions of the steady-state problem, and the values of parameters at which the switching from one of these solutions to another occurs are calculated. |
doi_str_mv | 10.1134/S0965542522020051 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638061103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638061103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bfef7b6b506ee54d467ee6d0199710254072ef8dbb9290f0b418924ba9b071873</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKc_wLeAz9WbtEmbRxlOBxPFzeeStLdbRtfUpEX77-2Y4IP4dB_O950Lh5BrBreMxcndCpQUIuGCc-AAgp2QCRNCRFJKfkomhzg65OfkIoQdAJMqiydEz21T2mZDVx3qcqCvzgbsbV1jtB5apPPafQZaOU8XTeH2rccQrKlxBOthj94WI9LbMlAz0G6L9A1r_aU76xr6jN3WlZfkrNJ1wKufOyXv84f17ClavjwuZvfLqIiZ7CJTYZUaaQRIRJGUiUwRZQlMqZQBFwmkHKusNEZxBRWYhGWKJ0YrAynL0nhKbo69rXcfPYYu37neN-PLnMs4A8kYxCPFjlThXQgeq7z1dq_9kDPID0vmf5YcHX50wsg2G_S_zf9L35rodOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638061103</pqid></control><display><type>article</type><title>Finding Steady Poiseuille-Type Flows for Incompressible Polymeric Fluids by the Relaxation Method</title><source>Springer Link</source><creator>Blokhin, A. M. ; Semisalov, B. V.</creator><creatorcontrib>Blokhin, A. M. ; Semisalov, B. V.</creatorcontrib><description>Stabilization of flows of an incompressible viscoelastic polymeric fluid in a channel with a rectangular cross section under the action of a constant pressure drop is analyzed numerically. The flows are described within the Pokrovskii–Vinogradov rheological mesoscopic model. An algorithm for solving initial-boundary value problems for nonstationary equations of the model is developed. It uses spatial interpolations with Chebyshev nodes and implicit time integration scheme. It is shown analytically that, in the steady state, the model admits three highly smooth solutions. The question of which of these solutions is realized in practice is investigated by calculating the limit of the solutions of nonstationary equations. It is found that this limit coincides, with high accuracy, with one of the three solutions of the steady-state problem, and the values of parameters at which the switching from one of these solutions to another occurs are calculated.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542522020051</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Boundary value problems ; Chebyshev approximation ; Computational Mathematics and Numerical Analysis ; Fluid flow ; Incompressible flow ; Mathematical models ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Pressure drop ; Relaxation method (mathematics) ; Rheological properties ; Steady state models ; Time integration</subject><ispartof>Computational mathematics and mathematical physics, 2022-02, Vol.62 (2), p.302-315</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2022, Vol. 62, No. 2, pp. 302–315. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2022, Vol. 62, No. 2, pp. 305–319.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bfef7b6b506ee54d467ee6d0199710254072ef8dbb9290f0b418924ba9b071873</citedby><cites>FETCH-LOGICAL-c316t-bfef7b6b506ee54d467ee6d0199710254072ef8dbb9290f0b418924ba9b071873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Blokhin, A. M.</creatorcontrib><creatorcontrib>Semisalov, B. V.</creatorcontrib><title>Finding Steady Poiseuille-Type Flows for Incompressible Polymeric Fluids by the Relaxation Method</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>Stabilization of flows of an incompressible viscoelastic polymeric fluid in a channel with a rectangular cross section under the action of a constant pressure drop is analyzed numerically. The flows are described within the Pokrovskii–Vinogradov rheological mesoscopic model. An algorithm for solving initial-boundary value problems for nonstationary equations of the model is developed. It uses spatial interpolations with Chebyshev nodes and implicit time integration scheme. It is shown analytically that, in the steady state, the model admits three highly smooth solutions. The question of which of these solutions is realized in practice is investigated by calculating the limit of the solutions of nonstationary equations. It is found that this limit coincides, with high accuracy, with one of the three solutions of the steady-state problem, and the values of parameters at which the switching from one of these solutions to another occurs are calculated.</description><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Chebyshev approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Mathematical models</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Pressure drop</subject><subject>Relaxation method (mathematics)</subject><subject>Rheological properties</subject><subject>Steady state models</subject><subject>Time integration</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAUhYMoOKc_wLeAz9WbtEmbRxlOBxPFzeeStLdbRtfUpEX77-2Y4IP4dB_O950Lh5BrBreMxcndCpQUIuGCc-AAgp2QCRNCRFJKfkomhzg65OfkIoQdAJMqiydEz21T2mZDVx3qcqCvzgbsbV1jtB5apPPafQZaOU8XTeH2rccQrKlxBOthj94WI9LbMlAz0G6L9A1r_aU76xr6jN3WlZfkrNJ1wKufOyXv84f17ClavjwuZvfLqIiZ7CJTYZUaaQRIRJGUiUwRZQlMqZQBFwmkHKusNEZxBRWYhGWKJ0YrAynL0nhKbo69rXcfPYYu37neN-PLnMs4A8kYxCPFjlThXQgeq7z1dq_9kDPID0vmf5YcHX50wsg2G_S_zf9L35rodOo</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Blokhin, A. M.</creator><creator>Semisalov, B. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220201</creationdate><title>Finding Steady Poiseuille-Type Flows for Incompressible Polymeric Fluids by the Relaxation Method</title><author>Blokhin, A. M. ; Semisalov, B. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bfef7b6b506ee54d467ee6d0199710254072ef8dbb9290f0b418924ba9b071873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Chebyshev approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Mathematical models</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Pressure drop</topic><topic>Relaxation method (mathematics)</topic><topic>Rheological properties</topic><topic>Steady state models</topic><topic>Time integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blokhin, A. M.</creatorcontrib><creatorcontrib>Semisalov, B. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blokhin, A. M.</au><au>Semisalov, B. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding Steady Poiseuille-Type Flows for Incompressible Polymeric Fluids by the Relaxation Method</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>62</volume><issue>2</issue><spage>302</spage><epage>315</epage><pages>302-315</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>Stabilization of flows of an incompressible viscoelastic polymeric fluid in a channel with a rectangular cross section under the action of a constant pressure drop is analyzed numerically. The flows are described within the Pokrovskii–Vinogradov rheological mesoscopic model. An algorithm for solving initial-boundary value problems for nonstationary equations of the model is developed. It uses spatial interpolations with Chebyshev nodes and implicit time integration scheme. It is shown analytically that, in the steady state, the model admits three highly smooth solutions. The question of which of these solutions is realized in practice is investigated by calculating the limit of the solutions of nonstationary equations. It is found that this limit coincides, with high accuracy, with one of the three solutions of the steady-state problem, and the values of parameters at which the switching from one of these solutions to another occurs are calculated.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542522020051</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2022-02, Vol.62 (2), p.302-315 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_2638061103 |
source | Springer Link |
subjects | Algorithms Boundary value problems Chebyshev approximation Computational Mathematics and Numerical Analysis Fluid flow Incompressible flow Mathematical models Mathematical Physics Mathematics Mathematics and Statistics Pressure drop Relaxation method (mathematics) Rheological properties Steady state models Time integration |
title | Finding Steady Poiseuille-Type Flows for Incompressible Polymeric Fluids by the Relaxation Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20Steady%20Poiseuille-Type%20Flows%20for%20Incompressible%20Polymeric%20Fluids%20by%20the%20Relaxation%20Method&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Blokhin,%20A.%20M.&rft.date=2022-02-01&rft.volume=62&rft.issue=2&rft.spage=302&rft.epage=315&rft.pages=302-315&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542522020051&rft_dat=%3Cproquest_cross%3E2638061103%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-bfef7b6b506ee54d467ee6d0199710254072ef8dbb9290f0b418924ba9b071873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638061103&rft_id=info:pmid/&rfr_iscdi=true |