Loading…

3D optical diagnostics for explosively driven deformation and fragmentation

•Explosive case deformation and fragmentation quantified by non‐contact, optical diagnostics.•3D case velocity, strain, and strain rates measured with digital image correlation (DIC).•In‐flight fragment velocity and mass quantified via stereo imaging with view normal correction.•Measurement uncertai...

Full description

Saved in:
Bibliographic Details
Published in:International journal of impact engineering 2022-04, Vol.162, p.104142, Article 104142
Main Authors: Guildenbecher, Daniel R., Jones, Elizabeth M.C., Hall, Elise M., Reu, Phillip L., Miller, Timothy J., Perez, Francisco, Thompson, Andrew D., Ball, James Patrick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-a35a7231e3fb20521c5da147520b1ae4da4e0892c1e554dbf19edfc1f592e88c3
cites cdi_FETCH-LOGICAL-c388t-a35a7231e3fb20521c5da147520b1ae4da4e0892c1e554dbf19edfc1f592e88c3
container_end_page
container_issue
container_start_page 104142
container_title International journal of impact engineering
container_volume 162
creator Guildenbecher, Daniel R.
Jones, Elizabeth M.C.
Hall, Elise M.
Reu, Phillip L.
Miller, Timothy J.
Perez, Francisco
Thompson, Andrew D.
Ball, James Patrick
description •Explosive case deformation and fragmentation quantified by non‐contact, optical diagnostics.•3D case velocity, strain, and strain rates measured with digital image correlation (DIC).•In‐flight fragment velocity and mass quantified via stereo imaging with view normal correction.•Measurement uncertainties and confidence bounds contribute to a validation quality dataset.•Case dynamics and fragment masses show favorable agreement to hydrocode predictions. High-speed, optical imaging diagnostics are presented for three-dimensional (3D) quantification of explosively driven metal fragmentation. At early times after detonation, Digital Image Correlation (DIC) provides non-contact measures of 3D case velocities, strains, and strain rates, while a proposed stereo imaging configuration quantifies in-flight fragment masses and velocities at later times. Experiments are performed using commercially obtained RP-80 detonators from Teledyne RISI, which are shown to create a reproducible fragment field at the benchtop scale. DIC measurements are compared with 3D simulations, which have been ‘leveled’ to match the spatial resolution of DIC. Results demonstrate improved ability to identify predicted quantities-of-interest that fall outside of measurement uncertainty and shot-to-shot variability. Similarly, video measures of fragment trajectories and masses allow rapid experimental repetition and provide correlated fragment size-velocity measurements. Measured and simulated fragment mass distributions are shown to agree within confidence bounds, while some statistically meaningful differences are observed between the measured and predicted conditionally averaged fragment velocities. Together these techniques demonstrate new opportunities to improve future model validation.
doi_str_mv 10.1016/j.ijimpeng.2021.104142
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638081821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0734743X21003171</els_id><sourcerecordid>2638081821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-a35a7231e3fb20521c5da147520b1ae4da4e0892c1e554dbf19edfc1f592e88c3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMIvoEicU7x23Dg3UHmKSlxA4ma59rpylMTBTiv696QUzpxGOzszqx1CLoHOgML8up752rc9dusZowxGsoCCHZEJyLLKuaDVMZnQkhd5WfCPU3KWUk0plFTQCXnhd1noB290k1mv111I45AyF2KGX30Tkt9is8tsHLHLLI6LVg8-dJnubOaiXrfYDT_MOTlxukl48YtT8v5w_7Z4ypevj8-L22VuuJRDrrnQJeOA3K0YFQyMsBqKUjC6Ao2F1QVSWTEDKERhVw4qtM6AExVDKQ2fkqtDbh_D5wbToOqwid14UrE5l1SCZDCq5geViSGliE710bc67hRQtS9O1eqvOLUvTh2KG403ByOOP2w9RpWMx86g9RHNoGzw_0V8A6dFev8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638081821</pqid></control><display><type>article</type><title>3D optical diagnostics for explosively driven deformation and fragmentation</title><source>ScienceDirect Journals</source><creator>Guildenbecher, Daniel R. ; Jones, Elizabeth M.C. ; Hall, Elise M. ; Reu, Phillip L. ; Miller, Timothy J. ; Perez, Francisco ; Thompson, Andrew D. ; Ball, James Patrick</creator><creatorcontrib>Guildenbecher, Daniel R. ; Jones, Elizabeth M.C. ; Hall, Elise M. ; Reu, Phillip L. ; Miller, Timothy J. ; Perez, Francisco ; Thompson, Andrew D. ; Ball, James Patrick</creatorcontrib><description>•Explosive case deformation and fragmentation quantified by non‐contact, optical diagnostics.•3D case velocity, strain, and strain rates measured with digital image correlation (DIC).•In‐flight fragment velocity and mass quantified via stereo imaging with view normal correction.•Measurement uncertainties and confidence bounds contribute to a validation quality dataset.•Case dynamics and fragment masses show favorable agreement to hydrocode predictions. High-speed, optical imaging diagnostics are presented for three-dimensional (3D) quantification of explosively driven metal fragmentation. At early times after detonation, Digital Image Correlation (DIC) provides non-contact measures of 3D case velocities, strains, and strain rates, while a proposed stereo imaging configuration quantifies in-flight fragment masses and velocities at later times. Experiments are performed using commercially obtained RP-80 detonators from Teledyne RISI, which are shown to create a reproducible fragment field at the benchtop scale. DIC measurements are compared with 3D simulations, which have been ‘leveled’ to match the spatial resolution of DIC. Results demonstrate improved ability to identify predicted quantities-of-interest that fall outside of measurement uncertainty and shot-to-shot variability. Similarly, video measures of fragment trajectories and masses allow rapid experimental repetition and provide correlated fragment size-velocity measurements. Measured and simulated fragment mass distributions are shown to agree within confidence bounds, while some statistically meaningful differences are observed between the measured and predicted conditionally averaged fragment velocities. Together these techniques demonstrate new opportunities to improve future model validation.</description><identifier>ISSN: 0734-743X</identifier><identifier>EISSN: 1879-3509</identifier><identifier>DOI: 10.1016/j.ijimpeng.2021.104142</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Detonation ; Detonators ; Digital image correlation ; Digital imaging ; Exploding bridge-wire detonator ; Explosive fragmentation ; Fragmentation ; Optical diagnostics ; Spatial resolution ; Trajectory measurement</subject><ispartof>International journal of impact engineering, 2022-04, Vol.162, p.104142, Article 104142</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-a35a7231e3fb20521c5da147520b1ae4da4e0892c1e554dbf19edfc1f592e88c3</citedby><cites>FETCH-LOGICAL-c388t-a35a7231e3fb20521c5da147520b1ae4da4e0892c1e554dbf19edfc1f592e88c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guildenbecher, Daniel R.</creatorcontrib><creatorcontrib>Jones, Elizabeth M.C.</creatorcontrib><creatorcontrib>Hall, Elise M.</creatorcontrib><creatorcontrib>Reu, Phillip L.</creatorcontrib><creatorcontrib>Miller, Timothy J.</creatorcontrib><creatorcontrib>Perez, Francisco</creatorcontrib><creatorcontrib>Thompson, Andrew D.</creatorcontrib><creatorcontrib>Ball, James Patrick</creatorcontrib><title>3D optical diagnostics for explosively driven deformation and fragmentation</title><title>International journal of impact engineering</title><description>•Explosive case deformation and fragmentation quantified by non‐contact, optical diagnostics.•3D case velocity, strain, and strain rates measured with digital image correlation (DIC).•In‐flight fragment velocity and mass quantified via stereo imaging with view normal correction.•Measurement uncertainties and confidence bounds contribute to a validation quality dataset.•Case dynamics and fragment masses show favorable agreement to hydrocode predictions. High-speed, optical imaging diagnostics are presented for three-dimensional (3D) quantification of explosively driven metal fragmentation. At early times after detonation, Digital Image Correlation (DIC) provides non-contact measures of 3D case velocities, strains, and strain rates, while a proposed stereo imaging configuration quantifies in-flight fragment masses and velocities at later times. Experiments are performed using commercially obtained RP-80 detonators from Teledyne RISI, which are shown to create a reproducible fragment field at the benchtop scale. DIC measurements are compared with 3D simulations, which have been ‘leveled’ to match the spatial resolution of DIC. Results demonstrate improved ability to identify predicted quantities-of-interest that fall outside of measurement uncertainty and shot-to-shot variability. Similarly, video measures of fragment trajectories and masses allow rapid experimental repetition and provide correlated fragment size-velocity measurements. Measured and simulated fragment mass distributions are shown to agree within confidence bounds, while some statistically meaningful differences are observed between the measured and predicted conditionally averaged fragment velocities. Together these techniques demonstrate new opportunities to improve future model validation.</description><subject>Detonation</subject><subject>Detonators</subject><subject>Digital image correlation</subject><subject>Digital imaging</subject><subject>Exploding bridge-wire detonator</subject><subject>Explosive fragmentation</subject><subject>Fragmentation</subject><subject>Optical diagnostics</subject><subject>Spatial resolution</subject><subject>Trajectory measurement</subject><issn>0734-743X</issn><issn>1879-3509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMIvoEicU7x23Dg3UHmKSlxA4ma59rpylMTBTiv696QUzpxGOzszqx1CLoHOgML8up752rc9dusZowxGsoCCHZEJyLLKuaDVMZnQkhd5WfCPU3KWUk0plFTQCXnhd1noB290k1mv111I45AyF2KGX30Tkt9is8tsHLHLLI6LVg8-dJnubOaiXrfYDT_MOTlxukl48YtT8v5w_7Z4ypevj8-L22VuuJRDrrnQJeOA3K0YFQyMsBqKUjC6Ao2F1QVSWTEDKERhVw4qtM6AExVDKQ2fkqtDbh_D5wbToOqwid14UrE5l1SCZDCq5geViSGliE710bc67hRQtS9O1eqvOLUvTh2KG403ByOOP2w9RpWMx86g9RHNoGzw_0V8A6dFev8</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Guildenbecher, Daniel R.</creator><creator>Jones, Elizabeth M.C.</creator><creator>Hall, Elise M.</creator><creator>Reu, Phillip L.</creator><creator>Miller, Timothy J.</creator><creator>Perez, Francisco</creator><creator>Thompson, Andrew D.</creator><creator>Ball, James Patrick</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>202204</creationdate><title>3D optical diagnostics for explosively driven deformation and fragmentation</title><author>Guildenbecher, Daniel R. ; Jones, Elizabeth M.C. ; Hall, Elise M. ; Reu, Phillip L. ; Miller, Timothy J. ; Perez, Francisco ; Thompson, Andrew D. ; Ball, James Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-a35a7231e3fb20521c5da147520b1ae4da4e0892c1e554dbf19edfc1f592e88c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Detonation</topic><topic>Detonators</topic><topic>Digital image correlation</topic><topic>Digital imaging</topic><topic>Exploding bridge-wire detonator</topic><topic>Explosive fragmentation</topic><topic>Fragmentation</topic><topic>Optical diagnostics</topic><topic>Spatial resolution</topic><topic>Trajectory measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guildenbecher, Daniel R.</creatorcontrib><creatorcontrib>Jones, Elizabeth M.C.</creatorcontrib><creatorcontrib>Hall, Elise M.</creatorcontrib><creatorcontrib>Reu, Phillip L.</creatorcontrib><creatorcontrib>Miller, Timothy J.</creatorcontrib><creatorcontrib>Perez, Francisco</creatorcontrib><creatorcontrib>Thompson, Andrew D.</creatorcontrib><creatorcontrib>Ball, James Patrick</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of impact engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guildenbecher, Daniel R.</au><au>Jones, Elizabeth M.C.</au><au>Hall, Elise M.</au><au>Reu, Phillip L.</au><au>Miller, Timothy J.</au><au>Perez, Francisco</au><au>Thompson, Andrew D.</au><au>Ball, James Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D optical diagnostics for explosively driven deformation and fragmentation</atitle><jtitle>International journal of impact engineering</jtitle><date>2022-04</date><risdate>2022</risdate><volume>162</volume><spage>104142</spage><pages>104142-</pages><artnum>104142</artnum><issn>0734-743X</issn><eissn>1879-3509</eissn><abstract>•Explosive case deformation and fragmentation quantified by non‐contact, optical diagnostics.•3D case velocity, strain, and strain rates measured with digital image correlation (DIC).•In‐flight fragment velocity and mass quantified via stereo imaging with view normal correction.•Measurement uncertainties and confidence bounds contribute to a validation quality dataset.•Case dynamics and fragment masses show favorable agreement to hydrocode predictions. High-speed, optical imaging diagnostics are presented for three-dimensional (3D) quantification of explosively driven metal fragmentation. At early times after detonation, Digital Image Correlation (DIC) provides non-contact measures of 3D case velocities, strains, and strain rates, while a proposed stereo imaging configuration quantifies in-flight fragment masses and velocities at later times. Experiments are performed using commercially obtained RP-80 detonators from Teledyne RISI, which are shown to create a reproducible fragment field at the benchtop scale. DIC measurements are compared with 3D simulations, which have been ‘leveled’ to match the spatial resolution of DIC. Results demonstrate improved ability to identify predicted quantities-of-interest that fall outside of measurement uncertainty and shot-to-shot variability. Similarly, video measures of fragment trajectories and masses allow rapid experimental repetition and provide correlated fragment size-velocity measurements. Measured and simulated fragment mass distributions are shown to agree within confidence bounds, while some statistically meaningful differences are observed between the measured and predicted conditionally averaged fragment velocities. Together these techniques demonstrate new opportunities to improve future model validation.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijimpeng.2021.104142</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0734-743X
ispartof International journal of impact engineering, 2022-04, Vol.162, p.104142, Article 104142
issn 0734-743X
1879-3509
language eng
recordid cdi_proquest_journals_2638081821
source ScienceDirect Journals
subjects Detonation
Detonators
Digital image correlation
Digital imaging
Exploding bridge-wire detonator
Explosive fragmentation
Fragmentation
Optical diagnostics
Spatial resolution
Trajectory measurement
title 3D optical diagnostics for explosively driven deformation and fragmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20optical%20diagnostics%20for%20explosively%20driven%20deformation%20and%20fragmentation&rft.jtitle=International%20journal%20of%20impact%20engineering&rft.au=Guildenbecher,%20Daniel%20R.&rft.date=2022-04&rft.volume=162&rft.spage=104142&rft.pages=104142-&rft.artnum=104142&rft.issn=0734-743X&rft.eissn=1879-3509&rft_id=info:doi/10.1016/j.ijimpeng.2021.104142&rft_dat=%3Cproquest_cross%3E2638081821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-a35a7231e3fb20521c5da147520b1ae4da4e0892c1e554dbf19edfc1f592e88c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638081821&rft_id=info:pmid/&rfr_iscdi=true