Loading…
A Survey of Deep Learning on Mobile Devices: Applications, Optimizations, Challenges, and Research Opportunities
Deep learning (DL) has demonstrated great performance in various applications on powerful computers and servers. Recently, with the advancement of more powerful mobile devices (e.g., smartphones and touch pads), researchers are seeking DL solutions that could be deployed on mobile devices. Compared...
Saved in:
Published in: | Proceedings of the IEEE 2022-03, Vol.110 (3), p.334-354 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-e6393823baa085df6dd1374a678503bd32a1d3000d98b7d318b13c570ddb7b1d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-e6393823baa085df6dd1374a678503bd32a1d3000d98b7d318b13c570ddb7b1d3 |
container_end_page | 354 |
container_issue | 3 |
container_start_page | 334 |
container_title | Proceedings of the IEEE |
container_volume | 110 |
creator | Zhao, Tianming Xie, Yucheng Wang, Yan Cheng, Jerry Guo, Xiaonan Hu, Bin Chen, Yingying |
description | Deep learning (DL) has demonstrated great performance in various applications on powerful computers and servers. Recently, with the advancement of more powerful mobile devices (e.g., smartphones and touch pads), researchers are seeking DL solutions that could be deployed on mobile devices. Compared to traditional DL solutions using cloud servers, deploying DL on mobile devices have unique advantages in data privacy, communication overhead, and system cost. This article provides a comprehensive survey for the current studies of adopting and deploying DL on mobile devices. Specifically, we summarize and compare the state-of-the-art DL techniques on mobile devices in various application domains involving vision, speech/speaker recognition, human activity recognition, transportation mode detection, and security. We generalize an optimization pipeline for bringing DL to mobile devices, including model-oriented optimization mechanisms (e.g., pruning and quantization) and nonmodel-oriented optimization mechanisms (e.g., software accelerator and hardware design). Moreover, we summarize popular DL libraries regarding their support to state-of-the-art models (software) and processors (hardware). Based on our summarization, we further provide insights into potential research opportunities for developing DL for mobile devices. |
doi_str_mv | 10.1109/JPROC.2022.3153408 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638123025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9733049</ieee_id><sourcerecordid>2638123025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-e6393823baa085df6dd1374a678503bd32a1d3000d98b7d318b13c570ddb7b1d3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxJYU21MnDruqvFVUVGAdOfG0dZUmwU4qla_HpcBqXvfOaA4h55wNOGfp9fPrbDoeCCbEALiEIVMHpMelVJEQMj4kPca4ilLB02Ny4v2KMQYyhh5pRvStcxvc0npObxEbOkHtKlstaF3Rlzq3JYb-xhbob-ioaUpb6NbWlb-i06a1a_v1V46XuiyxWmDIdWXoDH1YVSyDrqld21W2tehPydFclx7PfmOffNzfvY8fo8n04Wk8mkSFSGUbYQwpKAG51kxJM4-N4ZAMdZwoySA3IDQ3EN4wqcoTA1zlHAqZMGPyJA-jPrnc721c_dmhb7NV3bkqnMxEDIoLYEIGldirCld773CeNc6utdtmnGU7stkP2WxHNvslG0wXe5NFxH9DmgCwYQrfO3J00Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638123025</pqid></control><display><type>article</type><title>A Survey of Deep Learning on Mobile Devices: Applications, Optimizations, Challenges, and Research Opportunities</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhao, Tianming ; Xie, Yucheng ; Wang, Yan ; Cheng, Jerry ; Guo, Xiaonan ; Hu, Bin ; Chen, Yingying</creator><creatorcontrib>Zhao, Tianming ; Xie, Yucheng ; Wang, Yan ; Cheng, Jerry ; Guo, Xiaonan ; Hu, Bin ; Chen, Yingying</creatorcontrib><description>Deep learning (DL) has demonstrated great performance in various applications on powerful computers and servers. Recently, with the advancement of more powerful mobile devices (e.g., smartphones and touch pads), researchers are seeking DL solutions that could be deployed on mobile devices. Compared to traditional DL solutions using cloud servers, deploying DL on mobile devices have unique advantages in data privacy, communication overhead, and system cost. This article provides a comprehensive survey for the current studies of adopting and deploying DL on mobile devices. Specifically, we summarize and compare the state-of-the-art DL techniques on mobile devices in various application domains involving vision, speech/speaker recognition, human activity recognition, transportation mode detection, and security. We generalize an optimization pipeline for bringing DL to mobile devices, including model-oriented optimization mechanisms (e.g., pruning and quantization) and nonmodel-oriented optimization mechanisms (e.g., software accelerator and hardware design). Moreover, we summarize popular DL libraries regarding their support to state-of-the-art models (software) and processors (hardware). Based on our summarization, we further provide insights into potential research opportunities for developing DL for mobile devices.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2022.3153408</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerators ; Cloud computing ; Communications systems ; Deep learning ; Deep learning (DL) ; Design methodology ; Electronic devices ; Hardware ; hardware and software accelerator design ; Human activity recognition ; Machine learning ; Mobile handsets ; mobile security ; mobile sensing ; Moving object recognition ; Optimization ; Remote sensing ; Security ; Smartphones ; Software ; Speech recognition ; Transportation</subject><ispartof>Proceedings of the IEEE, 2022-03, Vol.110 (3), p.334-354</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-e6393823baa085df6dd1374a678503bd32a1d3000d98b7d318b13c570ddb7b1d3</citedby><cites>FETCH-LOGICAL-c295t-e6393823baa085df6dd1374a678503bd32a1d3000d98b7d318b13c570ddb7b1d3</cites><orcidid>0000-0002-3984-6973 ; 0000-0002-3994-766X ; 0000-0001-5830-6625 ; 0000-0002-8009-374X ; 0000-0002-5001-5636 ; 0000-0002-1177-6897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9733049$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhao, Tianming</creatorcontrib><creatorcontrib>Xie, Yucheng</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Cheng, Jerry</creatorcontrib><creatorcontrib>Guo, Xiaonan</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Chen, Yingying</creatorcontrib><title>A Survey of Deep Learning on Mobile Devices: Applications, Optimizations, Challenges, and Research Opportunities</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>Deep learning (DL) has demonstrated great performance in various applications on powerful computers and servers. Recently, with the advancement of more powerful mobile devices (e.g., smartphones and touch pads), researchers are seeking DL solutions that could be deployed on mobile devices. Compared to traditional DL solutions using cloud servers, deploying DL on mobile devices have unique advantages in data privacy, communication overhead, and system cost. This article provides a comprehensive survey for the current studies of adopting and deploying DL on mobile devices. Specifically, we summarize and compare the state-of-the-art DL techniques on mobile devices in various application domains involving vision, speech/speaker recognition, human activity recognition, transportation mode detection, and security. We generalize an optimization pipeline for bringing DL to mobile devices, including model-oriented optimization mechanisms (e.g., pruning and quantization) and nonmodel-oriented optimization mechanisms (e.g., software accelerator and hardware design). Moreover, we summarize popular DL libraries regarding their support to state-of-the-art models (software) and processors (hardware). Based on our summarization, we further provide insights into potential research opportunities for developing DL for mobile devices.</description><subject>Accelerators</subject><subject>Cloud computing</subject><subject>Communications systems</subject><subject>Deep learning</subject><subject>Deep learning (DL)</subject><subject>Design methodology</subject><subject>Electronic devices</subject><subject>Hardware</subject><subject>hardware and software accelerator design</subject><subject>Human activity recognition</subject><subject>Machine learning</subject><subject>Mobile handsets</subject><subject>mobile security</subject><subject>mobile sensing</subject><subject>Moving object recognition</subject><subject>Optimization</subject><subject>Remote sensing</subject><subject>Security</subject><subject>Smartphones</subject><subject>Software</subject><subject>Speech recognition</subject><subject>Transportation</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxJYU21MnDruqvFVUVGAdOfG0dZUmwU4qla_HpcBqXvfOaA4h55wNOGfp9fPrbDoeCCbEALiEIVMHpMelVJEQMj4kPca4ilLB02Ny4v2KMQYyhh5pRvStcxvc0npObxEbOkHtKlstaF3Rlzq3JYb-xhbob-ioaUpb6NbWlb-i06a1a_v1V46XuiyxWmDIdWXoDH1YVSyDrqld21W2tehPydFclx7PfmOffNzfvY8fo8n04Wk8mkSFSGUbYQwpKAG51kxJM4-N4ZAMdZwoySA3IDQ3EN4wqcoTA1zlHAqZMGPyJA-jPrnc721c_dmhb7NV3bkqnMxEDIoLYEIGldirCld773CeNc6utdtmnGU7stkP2WxHNvslG0wXe5NFxH9DmgCwYQrfO3J00Q</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Zhao, Tianming</creator><creator>Xie, Yucheng</creator><creator>Wang, Yan</creator><creator>Cheng, Jerry</creator><creator>Guo, Xiaonan</creator><creator>Hu, Bin</creator><creator>Chen, Yingying</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3984-6973</orcidid><orcidid>https://orcid.org/0000-0002-3994-766X</orcidid><orcidid>https://orcid.org/0000-0001-5830-6625</orcidid><orcidid>https://orcid.org/0000-0002-8009-374X</orcidid><orcidid>https://orcid.org/0000-0002-5001-5636</orcidid><orcidid>https://orcid.org/0000-0002-1177-6897</orcidid></search><sort><creationdate>20220301</creationdate><title>A Survey of Deep Learning on Mobile Devices: Applications, Optimizations, Challenges, and Research Opportunities</title><author>Zhao, Tianming ; Xie, Yucheng ; Wang, Yan ; Cheng, Jerry ; Guo, Xiaonan ; Hu, Bin ; Chen, Yingying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-e6393823baa085df6dd1374a678503bd32a1d3000d98b7d318b13c570ddb7b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerators</topic><topic>Cloud computing</topic><topic>Communications systems</topic><topic>Deep learning</topic><topic>Deep learning (DL)</topic><topic>Design methodology</topic><topic>Electronic devices</topic><topic>Hardware</topic><topic>hardware and software accelerator design</topic><topic>Human activity recognition</topic><topic>Machine learning</topic><topic>Mobile handsets</topic><topic>mobile security</topic><topic>mobile sensing</topic><topic>Moving object recognition</topic><topic>Optimization</topic><topic>Remote sensing</topic><topic>Security</topic><topic>Smartphones</topic><topic>Software</topic><topic>Speech recognition</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tianming</creatorcontrib><creatorcontrib>Xie, Yucheng</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Cheng, Jerry</creatorcontrib><creatorcontrib>Guo, Xiaonan</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Chen, Yingying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Tianming</au><au>Xie, Yucheng</au><au>Wang, Yan</au><au>Cheng, Jerry</au><au>Guo, Xiaonan</au><au>Hu, Bin</au><au>Chen, Yingying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey of Deep Learning on Mobile Devices: Applications, Optimizations, Challenges, and Research Opportunities</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>110</volume><issue>3</issue><spage>334</spage><epage>354</epage><pages>334-354</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>Deep learning (DL) has demonstrated great performance in various applications on powerful computers and servers. Recently, with the advancement of more powerful mobile devices (e.g., smartphones and touch pads), researchers are seeking DL solutions that could be deployed on mobile devices. Compared to traditional DL solutions using cloud servers, deploying DL on mobile devices have unique advantages in data privacy, communication overhead, and system cost. This article provides a comprehensive survey for the current studies of adopting and deploying DL on mobile devices. Specifically, we summarize and compare the state-of-the-art DL techniques on mobile devices in various application domains involving vision, speech/speaker recognition, human activity recognition, transportation mode detection, and security. We generalize an optimization pipeline for bringing DL to mobile devices, including model-oriented optimization mechanisms (e.g., pruning and quantization) and nonmodel-oriented optimization mechanisms (e.g., software accelerator and hardware design). Moreover, we summarize popular DL libraries regarding their support to state-of-the-art models (software) and processors (hardware). Based on our summarization, we further provide insights into potential research opportunities for developing DL for mobile devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2022.3153408</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-3984-6973</orcidid><orcidid>https://orcid.org/0000-0002-3994-766X</orcidid><orcidid>https://orcid.org/0000-0001-5830-6625</orcidid><orcidid>https://orcid.org/0000-0002-8009-374X</orcidid><orcidid>https://orcid.org/0000-0002-5001-5636</orcidid><orcidid>https://orcid.org/0000-0002-1177-6897</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 2022-03, Vol.110 (3), p.334-354 |
issn | 0018-9219 1558-2256 |
language | eng |
recordid | cdi_proquest_journals_2638123025 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accelerators Cloud computing Communications systems Deep learning Deep learning (DL) Design methodology Electronic devices Hardware hardware and software accelerator design Human activity recognition Machine learning Mobile handsets mobile security mobile sensing Moving object recognition Optimization Remote sensing Security Smartphones Software Speech recognition Transportation |
title | A Survey of Deep Learning on Mobile Devices: Applications, Optimizations, Challenges, and Research Opportunities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A08%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20of%20Deep%20Learning%20on%20Mobile%20Devices:%20Applications,%20Optimizations,%20Challenges,%20and%20Research%20Opportunities&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Zhao,%20Tianming&rft.date=2022-03-01&rft.volume=110&rft.issue=3&rft.spage=334&rft.epage=354&rft.pages=334-354&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2022.3153408&rft_dat=%3Cproquest_cross%3E2638123025%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-e6393823baa085df6dd1374a678503bd32a1d3000d98b7d318b13c570ddb7b1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638123025&rft_id=info:pmid/&rft_ieee_id=9733049&rfr_iscdi=true |