Loading…

A Survey of Deep Learning on Mobile Devices: Applications, Optimizations, Challenges, and Research Opportunities

Deep learning (DL) has demonstrated great performance in various applications on powerful computers and servers. Recently, with the advancement of more powerful mobile devices (e.g., smartphones and touch pads), researchers are seeking DL solutions that could be deployed on mobile devices. Compared...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the IEEE 2022-03, Vol.110 (3), p.334-354
Main Authors: Zhao, Tianming, Xie, Yucheng, Wang, Yan, Cheng, Jerry, Guo, Xiaonan, Hu, Bin, Chen, Yingying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-e6393823baa085df6dd1374a678503bd32a1d3000d98b7d318b13c570ddb7b1d3
cites cdi_FETCH-LOGICAL-c295t-e6393823baa085df6dd1374a678503bd32a1d3000d98b7d318b13c570ddb7b1d3
container_end_page 354
container_issue 3
container_start_page 334
container_title Proceedings of the IEEE
container_volume 110
creator Zhao, Tianming
Xie, Yucheng
Wang, Yan
Cheng, Jerry
Guo, Xiaonan
Hu, Bin
Chen, Yingying
description Deep learning (DL) has demonstrated great performance in various applications on powerful computers and servers. Recently, with the advancement of more powerful mobile devices (e.g., smartphones and touch pads), researchers are seeking DL solutions that could be deployed on mobile devices. Compared to traditional DL solutions using cloud servers, deploying DL on mobile devices have unique advantages in data privacy, communication overhead, and system cost. This article provides a comprehensive survey for the current studies of adopting and deploying DL on mobile devices. Specifically, we summarize and compare the state-of-the-art DL techniques on mobile devices in various application domains involving vision, speech/speaker recognition, human activity recognition, transportation mode detection, and security. We generalize an optimization pipeline for bringing DL to mobile devices, including model-oriented optimization mechanisms (e.g., pruning and quantization) and nonmodel-oriented optimization mechanisms (e.g., software accelerator and hardware design). Moreover, we summarize popular DL libraries regarding their support to state-of-the-art models (software) and processors (hardware). Based on our summarization, we further provide insights into potential research opportunities for developing DL for mobile devices.
doi_str_mv 10.1109/JPROC.2022.3153408
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638123025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9733049</ieee_id><sourcerecordid>2638123025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-e6393823baa085df6dd1374a678503bd32a1d3000d98b7d318b13c570ddb7b1d3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxJYU21MnDruqvFVUVGAdOfG0dZUmwU4qla_HpcBqXvfOaA4h55wNOGfp9fPrbDoeCCbEALiEIVMHpMelVJEQMj4kPca4ilLB02Ny4v2KMQYyhh5pRvStcxvc0npObxEbOkHtKlstaF3Rlzq3JYb-xhbob-ioaUpb6NbWlb-i06a1a_v1V46XuiyxWmDIdWXoDH1YVSyDrqld21W2tehPydFclx7PfmOffNzfvY8fo8n04Wk8mkSFSGUbYQwpKAG51kxJM4-N4ZAMdZwoySA3IDQ3EN4wqcoTA1zlHAqZMGPyJA-jPrnc721c_dmhb7NV3bkqnMxEDIoLYEIGldirCld773CeNc6utdtmnGU7stkP2WxHNvslG0wXe5NFxH9DmgCwYQrfO3J00Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638123025</pqid></control><display><type>article</type><title>A Survey of Deep Learning on Mobile Devices: Applications, Optimizations, Challenges, and Research Opportunities</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhao, Tianming ; Xie, Yucheng ; Wang, Yan ; Cheng, Jerry ; Guo, Xiaonan ; Hu, Bin ; Chen, Yingying</creator><creatorcontrib>Zhao, Tianming ; Xie, Yucheng ; Wang, Yan ; Cheng, Jerry ; Guo, Xiaonan ; Hu, Bin ; Chen, Yingying</creatorcontrib><description>Deep learning (DL) has demonstrated great performance in various applications on powerful computers and servers. Recently, with the advancement of more powerful mobile devices (e.g., smartphones and touch pads), researchers are seeking DL solutions that could be deployed on mobile devices. Compared to traditional DL solutions using cloud servers, deploying DL on mobile devices have unique advantages in data privacy, communication overhead, and system cost. This article provides a comprehensive survey for the current studies of adopting and deploying DL on mobile devices. Specifically, we summarize and compare the state-of-the-art DL techniques on mobile devices in various application domains involving vision, speech/speaker recognition, human activity recognition, transportation mode detection, and security. We generalize an optimization pipeline for bringing DL to mobile devices, including model-oriented optimization mechanisms (e.g., pruning and quantization) and nonmodel-oriented optimization mechanisms (e.g., software accelerator and hardware design). Moreover, we summarize popular DL libraries regarding their support to state-of-the-art models (software) and processors (hardware). Based on our summarization, we further provide insights into potential research opportunities for developing DL for mobile devices.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2022.3153408</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerators ; Cloud computing ; Communications systems ; Deep learning ; Deep learning (DL) ; Design methodology ; Electronic devices ; Hardware ; hardware and software accelerator design ; Human activity recognition ; Machine learning ; Mobile handsets ; mobile security ; mobile sensing ; Moving object recognition ; Optimization ; Remote sensing ; Security ; Smartphones ; Software ; Speech recognition ; Transportation</subject><ispartof>Proceedings of the IEEE, 2022-03, Vol.110 (3), p.334-354</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-e6393823baa085df6dd1374a678503bd32a1d3000d98b7d318b13c570ddb7b1d3</citedby><cites>FETCH-LOGICAL-c295t-e6393823baa085df6dd1374a678503bd32a1d3000d98b7d318b13c570ddb7b1d3</cites><orcidid>0000-0002-3984-6973 ; 0000-0002-3994-766X ; 0000-0001-5830-6625 ; 0000-0002-8009-374X ; 0000-0002-5001-5636 ; 0000-0002-1177-6897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9733049$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhao, Tianming</creatorcontrib><creatorcontrib>Xie, Yucheng</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Cheng, Jerry</creatorcontrib><creatorcontrib>Guo, Xiaonan</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Chen, Yingying</creatorcontrib><title>A Survey of Deep Learning on Mobile Devices: Applications, Optimizations, Challenges, and Research Opportunities</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>Deep learning (DL) has demonstrated great performance in various applications on powerful computers and servers. Recently, with the advancement of more powerful mobile devices (e.g., smartphones and touch pads), researchers are seeking DL solutions that could be deployed on mobile devices. Compared to traditional DL solutions using cloud servers, deploying DL on mobile devices have unique advantages in data privacy, communication overhead, and system cost. This article provides a comprehensive survey for the current studies of adopting and deploying DL on mobile devices. Specifically, we summarize and compare the state-of-the-art DL techniques on mobile devices in various application domains involving vision, speech/speaker recognition, human activity recognition, transportation mode detection, and security. We generalize an optimization pipeline for bringing DL to mobile devices, including model-oriented optimization mechanisms (e.g., pruning and quantization) and nonmodel-oriented optimization mechanisms (e.g., software accelerator and hardware design). Moreover, we summarize popular DL libraries regarding their support to state-of-the-art models (software) and processors (hardware). Based on our summarization, we further provide insights into potential research opportunities for developing DL for mobile devices.</description><subject>Accelerators</subject><subject>Cloud computing</subject><subject>Communications systems</subject><subject>Deep learning</subject><subject>Deep learning (DL)</subject><subject>Design methodology</subject><subject>Electronic devices</subject><subject>Hardware</subject><subject>hardware and software accelerator design</subject><subject>Human activity recognition</subject><subject>Machine learning</subject><subject>Mobile handsets</subject><subject>mobile security</subject><subject>mobile sensing</subject><subject>Moving object recognition</subject><subject>Optimization</subject><subject>Remote sensing</subject><subject>Security</subject><subject>Smartphones</subject><subject>Software</subject><subject>Speech recognition</subject><subject>Transportation</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxJYU21MnDruqvFVUVGAdOfG0dZUmwU4qla_HpcBqXvfOaA4h55wNOGfp9fPrbDoeCCbEALiEIVMHpMelVJEQMj4kPca4ilLB02Ny4v2KMQYyhh5pRvStcxvc0npObxEbOkHtKlstaF3Rlzq3JYb-xhbob-ioaUpb6NbWlb-i06a1a_v1V46XuiyxWmDIdWXoDH1YVSyDrqld21W2tehPydFclx7PfmOffNzfvY8fo8n04Wk8mkSFSGUbYQwpKAG51kxJM4-N4ZAMdZwoySA3IDQ3EN4wqcoTA1zlHAqZMGPyJA-jPrnc721c_dmhb7NV3bkqnMxEDIoLYEIGldirCld773CeNc6utdtmnGU7stkP2WxHNvslG0wXe5NFxH9DmgCwYQrfO3J00Q</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Zhao, Tianming</creator><creator>Xie, Yucheng</creator><creator>Wang, Yan</creator><creator>Cheng, Jerry</creator><creator>Guo, Xiaonan</creator><creator>Hu, Bin</creator><creator>Chen, Yingying</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3984-6973</orcidid><orcidid>https://orcid.org/0000-0002-3994-766X</orcidid><orcidid>https://orcid.org/0000-0001-5830-6625</orcidid><orcidid>https://orcid.org/0000-0002-8009-374X</orcidid><orcidid>https://orcid.org/0000-0002-5001-5636</orcidid><orcidid>https://orcid.org/0000-0002-1177-6897</orcidid></search><sort><creationdate>20220301</creationdate><title>A Survey of Deep Learning on Mobile Devices: Applications, Optimizations, Challenges, and Research Opportunities</title><author>Zhao, Tianming ; Xie, Yucheng ; Wang, Yan ; Cheng, Jerry ; Guo, Xiaonan ; Hu, Bin ; Chen, Yingying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-e6393823baa085df6dd1374a678503bd32a1d3000d98b7d318b13c570ddb7b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerators</topic><topic>Cloud computing</topic><topic>Communications systems</topic><topic>Deep learning</topic><topic>Deep learning (DL)</topic><topic>Design methodology</topic><topic>Electronic devices</topic><topic>Hardware</topic><topic>hardware and software accelerator design</topic><topic>Human activity recognition</topic><topic>Machine learning</topic><topic>Mobile handsets</topic><topic>mobile security</topic><topic>mobile sensing</topic><topic>Moving object recognition</topic><topic>Optimization</topic><topic>Remote sensing</topic><topic>Security</topic><topic>Smartphones</topic><topic>Software</topic><topic>Speech recognition</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tianming</creatorcontrib><creatorcontrib>Xie, Yucheng</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Cheng, Jerry</creatorcontrib><creatorcontrib>Guo, Xiaonan</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Chen, Yingying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Tianming</au><au>Xie, Yucheng</au><au>Wang, Yan</au><au>Cheng, Jerry</au><au>Guo, Xiaonan</au><au>Hu, Bin</au><au>Chen, Yingying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey of Deep Learning on Mobile Devices: Applications, Optimizations, Challenges, and Research Opportunities</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>110</volume><issue>3</issue><spage>334</spage><epage>354</epage><pages>334-354</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>Deep learning (DL) has demonstrated great performance in various applications on powerful computers and servers. Recently, with the advancement of more powerful mobile devices (e.g., smartphones and touch pads), researchers are seeking DL solutions that could be deployed on mobile devices. Compared to traditional DL solutions using cloud servers, deploying DL on mobile devices have unique advantages in data privacy, communication overhead, and system cost. This article provides a comprehensive survey for the current studies of adopting and deploying DL on mobile devices. Specifically, we summarize and compare the state-of-the-art DL techniques on mobile devices in various application domains involving vision, speech/speaker recognition, human activity recognition, transportation mode detection, and security. We generalize an optimization pipeline for bringing DL to mobile devices, including model-oriented optimization mechanisms (e.g., pruning and quantization) and nonmodel-oriented optimization mechanisms (e.g., software accelerator and hardware design). Moreover, we summarize popular DL libraries regarding their support to state-of-the-art models (software) and processors (hardware). Based on our summarization, we further provide insights into potential research opportunities for developing DL for mobile devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2022.3153408</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-3984-6973</orcidid><orcidid>https://orcid.org/0000-0002-3994-766X</orcidid><orcidid>https://orcid.org/0000-0001-5830-6625</orcidid><orcidid>https://orcid.org/0000-0002-8009-374X</orcidid><orcidid>https://orcid.org/0000-0002-5001-5636</orcidid><orcidid>https://orcid.org/0000-0002-1177-6897</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2022-03, Vol.110 (3), p.334-354
issn 0018-9219
1558-2256
language eng
recordid cdi_proquest_journals_2638123025
source IEEE Electronic Library (IEL) Journals
subjects Accelerators
Cloud computing
Communications systems
Deep learning
Deep learning (DL)
Design methodology
Electronic devices
Hardware
hardware and software accelerator design
Human activity recognition
Machine learning
Mobile handsets
mobile security
mobile sensing
Moving object recognition
Optimization
Remote sensing
Security
Smartphones
Software
Speech recognition
Transportation
title A Survey of Deep Learning on Mobile Devices: Applications, Optimizations, Challenges, and Research Opportunities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A08%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20of%20Deep%20Learning%20on%20Mobile%20Devices:%20Applications,%20Optimizations,%20Challenges,%20and%20Research%20Opportunities&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Zhao,%20Tianming&rft.date=2022-03-01&rft.volume=110&rft.issue=3&rft.spage=334&rft.epage=354&rft.pages=334-354&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2022.3153408&rft_dat=%3Cproquest_cross%3E2638123025%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-e6393823baa085df6dd1374a678503bd32a1d3000d98b7d318b13c570ddb7b1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638123025&rft_id=info:pmid/&rft_ieee_id=9733049&rfr_iscdi=true