Loading…

Protein–water coupling tunes the anharmonicity of amide I modes in the interfacial membrane-bound proteins

The diagonal anharmonicity of an amide I mode of protein backbones plays a critical role in a protein’s vibrational dynamics and energy transfer. However, this anharmonicity of long-chain peptides and proteins in H2O environment is still lacking. Here, we investigate the anharmonicity of the amide I...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2022-03, Vol.156 (10), p.105103-105103
Main Authors: Tan, Junjun, Ni, Zijian, Ye, Shuji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The diagonal anharmonicity of an amide I mode of protein backbones plays a critical role in a protein’s vibrational dynamics and energy transfer. However, this anharmonicity of long-chain peptides and proteins in H2O environment is still lacking. Here, we investigate the anharmonicity of the amide I band of proteins at the lipid membrane/H2O interface using a surface-sensitive pump–probe setup in which a femtosecond infrared pump is followed by a femtosecond broadband sum frequency generation vibrational spectroscopy probe. It is found that the anharmonicity of the amide I mode in ideal α-helical and β-sheet structures at hydrophobic environments is 3–4 cm−1, indicating that the amide I mode in ideal α-helical and β-sheet structures is delocalized over eight peptide bonds. The anharmonicity increases as the bandwidth of the amide I mode increases due to the exposure of peptide bonds to H2O. More H2O exposure amounts lead to a larger anharmonicity. The amide I mode of the peptides with large H2O exposure amounts is localized in one to two peptide bonds. Our finding reveals that the coupling between the amide I mode and the H2O bending mode does not facilitate the delocalization of the amide I mode along the peptide chain, highlighting the impact of H2O on energy transfer and structural dynamics of proteins.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0078632