Loading…
GNSS Single-Frequency, Single-Epoch Attitude Determination Method with Orthogonal Constraints
Attitude determination is one of the most considerable applications in high-precision GNSS (Global Navigation Satellite System) positioning and navigation. For rigid-body applications, the baseline is approximately fixed on the same plane and its relative position does not change over time. This pro...
Saved in:
Published in: | Mathematical problems in engineering 2022-03, Vol.2022, p.1-9 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Attitude determination is one of the most considerable applications in high-precision GNSS (Global Navigation Satellite System) positioning and navigation. For rigid-body applications, the baseline is approximately fixed on the same plane and its relative position does not change over time. This provides an important constraint that can be exploited to directly aid the attitude determination process. This study provides an attitude determination algorithm with orthogonal constraints for single frequency and single epoch by fully integrating the baseline orthogonal constraints into the observation equations. Carrier phase and pseudo-range measurement from more than two antennas are used to construct the double-difference observation equations. Given the inclusion analysis of the two search spaces, the LAMBDA algorithm is used to transform the non-ellipsoid space search into the ellipsoid space search. The attitude matrix is solved directly by the Lagrange multiplier method and the optimal solution is selected by search space verification. The analysis focuses on single-frequency, single-epoch, rigid-body attitude accuracy and calculation amount. Experimental results demonstrate that the proposed approach can effectively improve the success rate and reliability of single-frequency and single-epoch attitude resolution. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2022/4426987 |