Loading…

Aggregated Traffic Anomaly Detection Using Time Series Forecasting on Call Detail Records

Mobile network operators store an enormous amount of information like log files that describe various events and users’ activities. Analysis of these logs might be used in many critical applications such as detecting cyber attacks, finding behavioral patterns of users, security incident response, an...

Full description

Saved in:
Bibliographic Details
Published in:Security and communication networks 2022-03, Vol.2022, p.1-9
Main Authors: Mokhtari, Arian, Ghorbani, Niloofar, Bahrak, Behnam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c294t-ad2865c03338f05f85ffdf4db497ef331a911c1eaf92f9b63e73ed0f3f8e405f3
container_end_page 9
container_issue
container_start_page 1
container_title Security and communication networks
container_volume 2022
creator Mokhtari, Arian
Ghorbani, Niloofar
Bahrak, Behnam
description Mobile network operators store an enormous amount of information like log files that describe various events and users’ activities. Analysis of these logs might be used in many critical applications such as detecting cyber attacks, finding behavioral patterns of users, security incident response, and network forensics. In a cellular network, call detail records (CDRs) is one type of such logs containing metadata of calls and usually includes valuable information about contacts such as the phone numbers of originating and receiving subscribers, call duration, the area of activity, type of call (SMS or voice call), and a timestamp. With anomaly detection, it is possible to determine abnormal reduction or increment of network traffic in an area or for a particular person. This paper’s primary goal is to study subscribers’ behavior in a cellular network, mainly predicting the number of calls in a region and detecting anomalies in the network traffic. In this paper, a new hybrid method is proposed based on various anomaly detection methods such as GARCH, K-means, and neural network to determine the anomalous data. Moreover, we have discussed the possible causes of such anomalies.
doi_str_mv 10.1155/2022/1182315
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638546863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638546863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-ad2865c03338f05f85ffdf4db497ef331a911c1eaf92f9b63e73ed0f3f8e405f3</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AgCs7pzQ8Q8Kh1eUnaNccxNxUGgm4HTyFLX2pG186kQ_btbdnw6Ok9Hj_-D_6E3AJ7BEjTEWecjwByLiA9IwNQQiUMOD__20FekqsYN4xlIMdyQD4nZRmwNC0WdBmMc97SSd1sTXWgT9iibX1T01X0dUmXfov0A4PHSOdNQGti2987MDVV1XvjK_qOtglFvCYXzlQRb05zSFbz2XL6kizenl-nk0ViuZJtYgqeZ6llQojcsdTlqXOFk8VaqjE6IcAoAAtonOJOrTOBY4EFc8LlKDsvhuTumLsLzfceY6s3zT7U3UvNM5GnMssz0amHo7KhiTGg07vgtyYcNDDdl6f78vSpvI7fH_mXrwvz4__Xv8lPbgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638546863</pqid></control><display><type>article</type><title>Aggregated Traffic Anomaly Detection Using Time Series Forecasting on Call Detail Records</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><creator>Mokhtari, Arian ; Ghorbani, Niloofar ; Bahrak, Behnam</creator><contributor>Babaie, Shahram ; Shahram Babaie</contributor><creatorcontrib>Mokhtari, Arian ; Ghorbani, Niloofar ; Bahrak, Behnam ; Babaie, Shahram ; Shahram Babaie</creatorcontrib><description>Mobile network operators store an enormous amount of information like log files that describe various events and users’ activities. Analysis of these logs might be used in many critical applications such as detecting cyber attacks, finding behavioral patterns of users, security incident response, and network forensics. In a cellular network, call detail records (CDRs) is one type of such logs containing metadata of calls and usually includes valuable information about contacts such as the phone numbers of originating and receiving subscribers, call duration, the area of activity, type of call (SMS or voice call), and a timestamp. With anomaly detection, it is possible to determine abnormal reduction or increment of network traffic in an area or for a particular person. This paper’s primary goal is to study subscribers’ behavior in a cellular network, mainly predicting the number of calls in a region and detecting anomalies in the network traffic. In this paper, a new hybrid method is proposed based on various anomaly detection methods such as GARCH, K-means, and neural network to determine the anomalous data. Moreover, we have discussed the possible causes of such anomalies.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2022/1182315</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Accuracy ; Algorithms ; Anomalies ; Behavior ; Cellular communication ; Clustering ; Communications traffic ; Cybersecurity ; Datasets ; Forecasting ; Forecasting techniques ; Machine learning ; Neural networks ; Statistical methods ; Stochastic models ; Time series ; Traffic congestion ; Wireless networks</subject><ispartof>Security and communication networks, 2022-03, Vol.2022, p.1-9</ispartof><rights>Copyright © 2022 Arian Mokhtari et al.</rights><rights>Copyright © 2022 Arian Mokhtari et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-ad2865c03338f05f85ffdf4db497ef331a911c1eaf92f9b63e73ed0f3f8e405f3</cites><orcidid>0000-0002-3374-9769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2638546863?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25735,27906,27907,36994,44572</link.rule.ids></links><search><contributor>Babaie, Shahram</contributor><contributor>Shahram Babaie</contributor><creatorcontrib>Mokhtari, Arian</creatorcontrib><creatorcontrib>Ghorbani, Niloofar</creatorcontrib><creatorcontrib>Bahrak, Behnam</creatorcontrib><title>Aggregated Traffic Anomaly Detection Using Time Series Forecasting on Call Detail Records</title><title>Security and communication networks</title><description>Mobile network operators store an enormous amount of information like log files that describe various events and users’ activities. Analysis of these logs might be used in many critical applications such as detecting cyber attacks, finding behavioral patterns of users, security incident response, and network forensics. In a cellular network, call detail records (CDRs) is one type of such logs containing metadata of calls and usually includes valuable information about contacts such as the phone numbers of originating and receiving subscribers, call duration, the area of activity, type of call (SMS or voice call), and a timestamp. With anomaly detection, it is possible to determine abnormal reduction or increment of network traffic in an area or for a particular person. This paper’s primary goal is to study subscribers’ behavior in a cellular network, mainly predicting the number of calls in a region and detecting anomalies in the network traffic. In this paper, a new hybrid method is proposed based on various anomaly detection methods such as GARCH, K-means, and neural network to determine the anomalous data. Moreover, we have discussed the possible causes of such anomalies.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>Behavior</subject><subject>Cellular communication</subject><subject>Clustering</subject><subject>Communications traffic</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Statistical methods</subject><subject>Stochastic models</subject><subject>Time series</subject><subject>Traffic congestion</subject><subject>Wireless networks</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp90EFLwzAUB_AgCs7pzQ8Q8Kh1eUnaNccxNxUGgm4HTyFLX2pG186kQ_btbdnw6Ok9Hj_-D_6E3AJ7BEjTEWecjwByLiA9IwNQQiUMOD__20FekqsYN4xlIMdyQD4nZRmwNC0WdBmMc97SSd1sTXWgT9iibX1T01X0dUmXfov0A4PHSOdNQGti2987MDVV1XvjK_qOtglFvCYXzlQRb05zSFbz2XL6kizenl-nk0ViuZJtYgqeZ6llQojcsdTlqXOFk8VaqjE6IcAoAAtonOJOrTOBY4EFc8LlKDsvhuTumLsLzfceY6s3zT7U3UvNM5GnMssz0amHo7KhiTGg07vgtyYcNDDdl6f78vSpvI7fH_mXrwvz4__Xv8lPbgE</recordid><startdate>20220302</startdate><enddate>20220302</enddate><creator>Mokhtari, Arian</creator><creator>Ghorbani, Niloofar</creator><creator>Bahrak, Behnam</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3374-9769</orcidid></search><sort><creationdate>20220302</creationdate><title>Aggregated Traffic Anomaly Detection Using Time Series Forecasting on Call Detail Records</title><author>Mokhtari, Arian ; Ghorbani, Niloofar ; Bahrak, Behnam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-ad2865c03338f05f85ffdf4db497ef331a911c1eaf92f9b63e73ed0f3f8e405f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>Behavior</topic><topic>Cellular communication</topic><topic>Clustering</topic><topic>Communications traffic</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Statistical methods</topic><topic>Stochastic models</topic><topic>Time series</topic><topic>Traffic congestion</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mokhtari, Arian</creatorcontrib><creatorcontrib>Ghorbani, Niloofar</creatorcontrib><creatorcontrib>Bahrak, Behnam</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mokhtari, Arian</au><au>Ghorbani, Niloofar</au><au>Bahrak, Behnam</au><au>Babaie, Shahram</au><au>Shahram Babaie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aggregated Traffic Anomaly Detection Using Time Series Forecasting on Call Detail Records</atitle><jtitle>Security and communication networks</jtitle><date>2022-03-02</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>Mobile network operators store an enormous amount of information like log files that describe various events and users’ activities. Analysis of these logs might be used in many critical applications such as detecting cyber attacks, finding behavioral patterns of users, security incident response, and network forensics. In a cellular network, call detail records (CDRs) is one type of such logs containing metadata of calls and usually includes valuable information about contacts such as the phone numbers of originating and receiving subscribers, call duration, the area of activity, type of call (SMS or voice call), and a timestamp. With anomaly detection, it is possible to determine abnormal reduction or increment of network traffic in an area or for a particular person. This paper’s primary goal is to study subscribers’ behavior in a cellular network, mainly predicting the number of calls in a region and detecting anomalies in the network traffic. In this paper, a new hybrid method is proposed based on various anomaly detection methods such as GARCH, K-means, and neural network to determine the anomalous data. Moreover, we have discussed the possible causes of such anomalies.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2022/1182315</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3374-9769</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2022-03, Vol.2022, p.1-9
issn 1939-0114
1939-0122
language eng
recordid cdi_proquest_journals_2638546863
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database
subjects Accuracy
Algorithms
Anomalies
Behavior
Cellular communication
Clustering
Communications traffic
Cybersecurity
Datasets
Forecasting
Forecasting techniques
Machine learning
Neural networks
Statistical methods
Stochastic models
Time series
Traffic congestion
Wireless networks
title Aggregated Traffic Anomaly Detection Using Time Series Forecasting on Call Detail Records
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aggregated%20Traffic%20Anomaly%20Detection%20Using%20Time%20Series%20Forecasting%20on%20Call%20Detail%20Records&rft.jtitle=Security%20and%20communication%20networks&rft.au=Mokhtari,%20Arian&rft.date=2022-03-02&rft.volume=2022&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2022/1182315&rft_dat=%3Cproquest_cross%3E2638546863%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-ad2865c03338f05f85ffdf4db497ef331a911c1eaf92f9b63e73ed0f3f8e405f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638546863&rft_id=info:pmid/&rfr_iscdi=true