Loading…

Optimization of thermocapillary-driven melting in trapezoidal and triangular geometry in microgravity

•Analysis of thermocapillary-driven melting in microgravity in different geometries.•In trapezoids resulting from inclining the cold wall, melting can be accelerated by a factor of 3 with respect to the rectangular case.•In trapezoids results from inkling the hot wall, melting is characterized by a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2022-04, Vol.185, p.122427, Article 122427
Main Authors: Borshchak Kachalov, A., Salgado Sánchez, P., Martínez, U., Fernández, J., Ezquerro, J.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-9d083edc51c846e82a2c8c86f29b39f0c3c48f5920005d8006efccf99862f12e3
cites cdi_FETCH-LOGICAL-c370t-9d083edc51c846e82a2c8c86f29b39f0c3c48f5920005d8006efccf99862f12e3
container_end_page
container_issue
container_start_page 122427
container_title International journal of heat and mass transfer
container_volume 185
creator Borshchak Kachalov, A.
Salgado Sánchez, P.
Martínez, U.
Fernández, J.
Ezquerro, J.M.
description •Analysis of thermocapillary-driven melting in microgravity in different geometries.•In trapezoids resulting from inclining the cold wall, melting can be accelerated by a factor of 3 with respect to the rectangular case.•In trapezoids results from inkling the hot wall, melting is characterized by a weak diffusive region that slows down the melting process.•A study on the effect of the aspect ratio Γ suggests that melting times scale with Γ-1.25 for a fixed PCM volume. A numerical analysis of thermocapillary-driven melting in trapezoidal and triangular geometry in microgravity is presented. The phase change transition is modelled using an enthalpy-porosity-based formulation of the Navier-Stokes equations, where the solid and liquid phases are treated as a single layer with physical properties depending on the local temperature, and analyzed for the organic phase change material (PCM) n-octadecane, due to its relevance to recent and upcoming microgravity research. We describe first the melting process in rectangular geometry, which is characterized by a final diffusive stage that largely determines the melting time τM, where the solid PCM near the cold boundary melts slowly. Other geometries are proposed to optimize the process and minimize τM. By inclining the cold lateral wall, melting can be accelerated substantially. We find a maximum reduction in τM by a factor of 3 in the limiting case of a right triangle — the optimal geometry within the scope of the present work. For completeness, the process is analyzed in the symmetric trapezoids that result from inclining the hot lateral wall. An increase (reduction) of the overall melting time (rate) is observed at moderate inclination angles, associated with a PCM region dominated by weak thermal diffusion. Finally, the effect of Γ is presented in both rectangular geometry and the optimal triangular geometry, suggesting a general scaling τM∝Γ−1.25.
doi_str_mv 10.1016/j.ijheatmasstransfer.2021.122427
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638770574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931021015258</els_id><sourcerecordid>2638770574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-9d083edc51c846e82a2c8c86f29b39f0c3c48f5920005d8006efccf99862f12e3</originalsourceid><addsrcrecordid>eNqNkE9P3DAQxS1EJRba7xCJC5dsx042sW8gVPpHSFzgbLnOeJkosYPtXWn59Hi1vXHpafQ0T2_m_Ri74bDmwLvv45rGVzR5NinlaHxyGNcCBF9zIVrRn7EVl72qBZfqnK0AeF-rhsMFu0xpPEpouxXDpyXTTO8mU_BVcFV-xTgHaxaaJhMP9RBpj76accrktxX5qlxb8D3QYKbK-KFoMn67K-5qi2HGHA9H20w2hm00e8qHr-yLM1PCb__mFXt5-PF8_6t-fPr5-_7usbZND7lWA8gGB7vhVrYdSmGElVZ2Tqi_jXJgG9tKt1ECADaDBOjQWeuUkp1wXGBzxa5PuUsMbztMWY9hF305qUXXyL6HTd8W1-3JVR5MKaLTS6S5lNUc9BGuHvVnuPoIV5_glog_pwgsbfZUtskSeosDRbRZD4H-P-wDYl6SAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638770574</pqid></control><display><type>article</type><title>Optimization of thermocapillary-driven melting in trapezoidal and triangular geometry in microgravity</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Borshchak Kachalov, A. ; Salgado Sánchez, P. ; Martínez, U. ; Fernández, J. ; Ezquerro, J.M.</creator><creatorcontrib>Borshchak Kachalov, A. ; Salgado Sánchez, P. ; Martínez, U. ; Fernández, J. ; Ezquerro, J.M.</creatorcontrib><description>•Analysis of thermocapillary-driven melting in microgravity in different geometries.•In trapezoids resulting from inclining the cold wall, melting can be accelerated by a factor of 3 with respect to the rectangular case.•In trapezoids results from inkling the hot wall, melting is characterized by a weak diffusive region that slows down the melting process.•A study on the effect of the aspect ratio Γ suggests that melting times scale with Γ-1.25 for a fixed PCM volume. A numerical analysis of thermocapillary-driven melting in trapezoidal and triangular geometry in microgravity is presented. The phase change transition is modelled using an enthalpy-porosity-based formulation of the Navier-Stokes equations, where the solid and liquid phases are treated as a single layer with physical properties depending on the local temperature, and analyzed for the organic phase change material (PCM) n-octadecane, due to its relevance to recent and upcoming microgravity research. We describe first the melting process in rectangular geometry, which is characterized by a final diffusive stage that largely determines the melting time τM, where the solid PCM near the cold boundary melts slowly. Other geometries are proposed to optimize the process and minimize τM. By inclining the cold lateral wall, melting can be accelerated substantially. We find a maximum reduction in τM by a factor of 3 in the limiting case of a right triangle — the optimal geometry within the scope of the present work. For completeness, the process is analyzed in the symmetric trapezoids that result from inclining the hot lateral wall. An increase (reduction) of the overall melting time (rate) is observed at moderate inclination angles, associated with a PCM region dominated by weak thermal diffusion. Finally, the effect of Γ is presented in both rectangular geometry and the optimal triangular geometry, suggesting a general scaling τM∝Γ−1.25.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2021.122427</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Diffusion effects ; Enthalpy ; Geometry ; Geometry optimization ; Inclination angle ; Liquid phases ; Melting ; Microgravity ; Numerical analysis ; Optimization ; Phase change materials ; Physical properties ; Reduction ; Solid phases ; Thermal diffusion ; Thermocapillary effect ; Trapezoids ; Triangles</subject><ispartof>International journal of heat and mass transfer, 2022-04, Vol.185, p.122427, Article 122427</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-9d083edc51c846e82a2c8c86f29b39f0c3c48f5920005d8006efccf99862f12e3</citedby><cites>FETCH-LOGICAL-c370t-9d083edc51c846e82a2c8c86f29b39f0c3c48f5920005d8006efccf99862f12e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Borshchak Kachalov, A.</creatorcontrib><creatorcontrib>Salgado Sánchez, P.</creatorcontrib><creatorcontrib>Martínez, U.</creatorcontrib><creatorcontrib>Fernández, J.</creatorcontrib><creatorcontrib>Ezquerro, J.M.</creatorcontrib><title>Optimization of thermocapillary-driven melting in trapezoidal and triangular geometry in microgravity</title><title>International journal of heat and mass transfer</title><description>•Analysis of thermocapillary-driven melting in microgravity in different geometries.•In trapezoids resulting from inclining the cold wall, melting can be accelerated by a factor of 3 with respect to the rectangular case.•In trapezoids results from inkling the hot wall, melting is characterized by a weak diffusive region that slows down the melting process.•A study on the effect of the aspect ratio Γ suggests that melting times scale with Γ-1.25 for a fixed PCM volume. A numerical analysis of thermocapillary-driven melting in trapezoidal and triangular geometry in microgravity is presented. The phase change transition is modelled using an enthalpy-porosity-based formulation of the Navier-Stokes equations, where the solid and liquid phases are treated as a single layer with physical properties depending on the local temperature, and analyzed for the organic phase change material (PCM) n-octadecane, due to its relevance to recent and upcoming microgravity research. We describe first the melting process in rectangular geometry, which is characterized by a final diffusive stage that largely determines the melting time τM, where the solid PCM near the cold boundary melts slowly. Other geometries are proposed to optimize the process and minimize τM. By inclining the cold lateral wall, melting can be accelerated substantially. We find a maximum reduction in τM by a factor of 3 in the limiting case of a right triangle — the optimal geometry within the scope of the present work. For completeness, the process is analyzed in the symmetric trapezoids that result from inclining the hot lateral wall. An increase (reduction) of the overall melting time (rate) is observed at moderate inclination angles, associated with a PCM region dominated by weak thermal diffusion. Finally, the effect of Γ is presented in both rectangular geometry and the optimal triangular geometry, suggesting a general scaling τM∝Γ−1.25.</description><subject>Diffusion effects</subject><subject>Enthalpy</subject><subject>Geometry</subject><subject>Geometry optimization</subject><subject>Inclination angle</subject><subject>Liquid phases</subject><subject>Melting</subject><subject>Microgravity</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Phase change materials</subject><subject>Physical properties</subject><subject>Reduction</subject><subject>Solid phases</subject><subject>Thermal diffusion</subject><subject>Thermocapillary effect</subject><subject>Trapezoids</subject><subject>Triangles</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkE9P3DAQxS1EJRba7xCJC5dsx042sW8gVPpHSFzgbLnOeJkosYPtXWn59Hi1vXHpafQ0T2_m_Ri74bDmwLvv45rGVzR5NinlaHxyGNcCBF9zIVrRn7EVl72qBZfqnK0AeF-rhsMFu0xpPEpouxXDpyXTTO8mU_BVcFV-xTgHaxaaJhMP9RBpj76accrktxX5qlxb8D3QYKbK-KFoMn67K-5qi2HGHA9H20w2hm00e8qHr-yLM1PCb__mFXt5-PF8_6t-fPr5-_7usbZND7lWA8gGB7vhVrYdSmGElVZ2Tqi_jXJgG9tKt1ECADaDBOjQWeuUkp1wXGBzxa5PuUsMbztMWY9hF305qUXXyL6HTd8W1-3JVR5MKaLTS6S5lNUc9BGuHvVnuPoIV5_glog_pwgsbfZUtskSeosDRbRZD4H-P-wDYl6SAA</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Borshchak Kachalov, A.</creator><creator>Salgado Sánchez, P.</creator><creator>Martínez, U.</creator><creator>Fernández, J.</creator><creator>Ezquerro, J.M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202204</creationdate><title>Optimization of thermocapillary-driven melting in trapezoidal and triangular geometry in microgravity</title><author>Borshchak Kachalov, A. ; Salgado Sánchez, P. ; Martínez, U. ; Fernández, J. ; Ezquerro, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-9d083edc51c846e82a2c8c86f29b39f0c3c48f5920005d8006efccf99862f12e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Diffusion effects</topic><topic>Enthalpy</topic><topic>Geometry</topic><topic>Geometry optimization</topic><topic>Inclination angle</topic><topic>Liquid phases</topic><topic>Melting</topic><topic>Microgravity</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Phase change materials</topic><topic>Physical properties</topic><topic>Reduction</topic><topic>Solid phases</topic><topic>Thermal diffusion</topic><topic>Thermocapillary effect</topic><topic>Trapezoids</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borshchak Kachalov, A.</creatorcontrib><creatorcontrib>Salgado Sánchez, P.</creatorcontrib><creatorcontrib>Martínez, U.</creatorcontrib><creatorcontrib>Fernández, J.</creatorcontrib><creatorcontrib>Ezquerro, J.M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borshchak Kachalov, A.</au><au>Salgado Sánchez, P.</au><au>Martínez, U.</au><au>Fernández, J.</au><au>Ezquerro, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of thermocapillary-driven melting in trapezoidal and triangular geometry in microgravity</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2022-04</date><risdate>2022</risdate><volume>185</volume><spage>122427</spage><pages>122427-</pages><artnum>122427</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Analysis of thermocapillary-driven melting in microgravity in different geometries.•In trapezoids resulting from inclining the cold wall, melting can be accelerated by a factor of 3 with respect to the rectangular case.•In trapezoids results from inkling the hot wall, melting is characterized by a weak diffusive region that slows down the melting process.•A study on the effect of the aspect ratio Γ suggests that melting times scale with Γ-1.25 for a fixed PCM volume. A numerical analysis of thermocapillary-driven melting in trapezoidal and triangular geometry in microgravity is presented. The phase change transition is modelled using an enthalpy-porosity-based formulation of the Navier-Stokes equations, where the solid and liquid phases are treated as a single layer with physical properties depending on the local temperature, and analyzed for the organic phase change material (PCM) n-octadecane, due to its relevance to recent and upcoming microgravity research. We describe first the melting process in rectangular geometry, which is characterized by a final diffusive stage that largely determines the melting time τM, where the solid PCM near the cold boundary melts slowly. Other geometries are proposed to optimize the process and minimize τM. By inclining the cold lateral wall, melting can be accelerated substantially. We find a maximum reduction in τM by a factor of 3 in the limiting case of a right triangle — the optimal geometry within the scope of the present work. For completeness, the process is analyzed in the symmetric trapezoids that result from inclining the hot lateral wall. An increase (reduction) of the overall melting time (rate) is observed at moderate inclination angles, associated with a PCM region dominated by weak thermal diffusion. Finally, the effect of Γ is presented in both rectangular geometry and the optimal triangular geometry, suggesting a general scaling τM∝Γ−1.25.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2021.122427</doi></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2022-04, Vol.185, p.122427, Article 122427
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2638770574
source ScienceDirect Freedom Collection 2022-2024
subjects Diffusion effects
Enthalpy
Geometry
Geometry optimization
Inclination angle
Liquid phases
Melting
Microgravity
Numerical analysis
Optimization
Phase change materials
Physical properties
Reduction
Solid phases
Thermal diffusion
Thermocapillary effect
Trapezoids
Triangles
title Optimization of thermocapillary-driven melting in trapezoidal and triangular geometry in microgravity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20thermocapillary-driven%20melting%20in%20trapezoidal%20and%20triangular%20geometry%20in%20microgravity&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Borshchak%20Kachalov,%20A.&rft.date=2022-04&rft.volume=185&rft.spage=122427&rft.pages=122427-&rft.artnum=122427&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2021.122427&rft_dat=%3Cproquest_cross%3E2638770574%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-9d083edc51c846e82a2c8c86f29b39f0c3c48f5920005d8006efccf99862f12e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638770574&rft_id=info:pmid/&rfr_iscdi=true