Loading…
One-dimensional polythiophene/multi-walled carbon nanotube composite cathodes for rechargeable magnesium battery: Evidence of improved stability and electrochemically induced rearrangement in electrode morphology
•Single-phase polythiophene-MWCNT composite achieved through in-situ chemical oxidative synthetic procedure.•PTh/MWCNT application as cathode for rechargeable Mg battery demonstrates improved electrochemical activity over pristine PTh.•A high discharge capacity of ∼157 mAh.g−1 achieved at an applied...
Saved in:
Published in: | Electrochimica acta 2022-02, Vol.404, p.139707, Article 139707 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-8f40a0895b14995f7dde0e41aedf4b23ca72748a3f1d5a5dadf2e06164d30e6b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-8f40a0895b14995f7dde0e41aedf4b23ca72748a3f1d5a5dadf2e06164d30e6b3 |
container_end_page | |
container_issue | |
container_start_page | 139707 |
container_title | Electrochimica acta |
container_volume | 404 |
creator | Raju, Vadthya Rani, J Vatsala Basak, Pratyay |
description | •Single-phase polythiophene-MWCNT composite achieved through in-situ chemical oxidative synthetic procedure.•PTh/MWCNT application as cathode for rechargeable Mg battery demonstrates improved electrochemical activity over pristine PTh.•A high discharge capacity of ∼157 mAh.g−1 achieved at an applied current density of 60 mA.g−1, sustained for >100 cycles.•Post electrochemical analysis defines the multi-polaron state associated with polythiophene composite electrode.•Electrochemically induced rearrangement/reorganization in electrode morphology imparts improved stability.
This paper showcases polythiophene/multi-walled carbon nanotube (PTh/MWCNT), synthesized via chemical in-situ oxidative method as an active cathode material for rechargeable magnesium (Mg) battery. Successful formation of the composite material is confirmed by Fourier transform-Infra Red and X-ray diffraction analysis. Morphological evaluations of the cathode materials employing field emission scanning- and transmission- electron microscopy (FESEM and TEM) reveal the composites’ one-dimensional, homogeneous phase formation. The feasibility of PTh/MWCNT composite as a prospective positive electrode for rechargeable magnesium battery is assessed using cyclic voltammetry and galvanostatic charge-discharge. Comprehensive electrochemical studies demonstrate a significantly enhanced performance of the optimized PTh/MWCNT cathode composition. A considerably high specific capacity of ∼157 mAh.g−1 coupled with appreciable coulombic efficiency (∼70%) and excellent reversibility (>100 cycles), at high current density, indicates great promise. Analysis by X-ray photoelectron spectroscopy confirms the existence of multi-polaron state of the polymer/composites providing crucial clues towards proposing a plausible mechanism of charge transport and storage. Affirmation of improved stability and electrochemically induced rearrangement in electrode morphology is clearly evidenced from the FESEM studies post charge-discharge cycles. These encouraging findings suggest PTh/MWCNT composite electrodes possess the desirable physical and electrochemical properties, to be considered as a potential polymer electrode for rechargeable Mg-battery.
Schematic representation of red-ox reactions occurring in the Mg-PTh/MWCNT cell consisting 1.0M Mg(ClO4)2/acetonitrile electrolyte and representative cyclic voltammetry of the cell over multiple number of cycles [Display omitted] . |
doi_str_mv | 10.1016/j.electacta.2021.139707 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638771555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468621019915</els_id><sourcerecordid>2638771555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-8f40a0895b14995f7dde0e41aedf4b23ca72748a3f1d5a5dadf2e06164d30e6b3</originalsourceid><addsrcrecordid>eNqFUcFq3DAQNSWBbtJ8QwU9eyNZtmX3FkKaFgK5tGcxlsZrLbLkSvIW_2c_qNpu22thQIN482bee0XxntE9o6y9P-7RokqQa1_Riu0Z7wUVb4od6wQvedf0V8WOUsbLuu3at8VNjEdKqWgF3RU_Xx2W2szoovEOLFm83dJk_DKhw_t5tcmUP8Ba1ERBGLwjDpxP64BE-Xnx0aTcQZq8xkhGH0hANUE4IAwWyQwHh9GsMxkgJQzbR_J0MhqdQuJHYuYl-FPmjgkGY03aCDhNfisKXk04G5WXb8Q4vaqMCwghgDtgvjjl379QnVf5sEze-sP2rrgewUa8-_PeFt8-PX19_Fy-vD5_eXx4KRWveSq7saZAu74ZWN33zSi0Roo1A9RjPVRcgahE3QEfmW6g0aDHCmnL2lpziu3Ab4sPF94s4vuKMcmjX0N2Mcqq5Z0QrGmajBIXlAo-xoCjXIKZIWySUXmOUB7lvwjlOUJ5iTBPPlwmMYs4GQwyKnO2TptscpLam_9y_AJJDbGN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638771555</pqid></control><display><type>article</type><title>One-dimensional polythiophene/multi-walled carbon nanotube composite cathodes for rechargeable magnesium battery: Evidence of improved stability and electrochemically induced rearrangement in electrode morphology</title><source>Elsevier</source><creator>Raju, Vadthya ; Rani, J Vatsala ; Basak, Pratyay</creator><creatorcontrib>Raju, Vadthya ; Rani, J Vatsala ; Basak, Pratyay</creatorcontrib><description>•Single-phase polythiophene-MWCNT composite achieved through in-situ chemical oxidative synthetic procedure.•PTh/MWCNT application as cathode for rechargeable Mg battery demonstrates improved electrochemical activity over pristine PTh.•A high discharge capacity of ∼157 mAh.g−1 achieved at an applied current density of 60 mA.g−1, sustained for >100 cycles.•Post electrochemical analysis defines the multi-polaron state associated with polythiophene composite electrode.•Electrochemically induced rearrangement/reorganization in electrode morphology imparts improved stability.
This paper showcases polythiophene/multi-walled carbon nanotube (PTh/MWCNT), synthesized via chemical in-situ oxidative method as an active cathode material for rechargeable magnesium (Mg) battery. Successful formation of the composite material is confirmed by Fourier transform-Infra Red and X-ray diffraction analysis. Morphological evaluations of the cathode materials employing field emission scanning- and transmission- electron microscopy (FESEM and TEM) reveal the composites’ one-dimensional, homogeneous phase formation. The feasibility of PTh/MWCNT composite as a prospective positive electrode for rechargeable magnesium battery is assessed using cyclic voltammetry and galvanostatic charge-discharge. Comprehensive electrochemical studies demonstrate a significantly enhanced performance of the optimized PTh/MWCNT cathode composition. A considerably high specific capacity of ∼157 mAh.g−1 coupled with appreciable coulombic efficiency (∼70%) and excellent reversibility (>100 cycles), at high current density, indicates great promise. Analysis by X-ray photoelectron spectroscopy confirms the existence of multi-polaron state of the polymer/composites providing crucial clues towards proposing a plausible mechanism of charge transport and storage. Affirmation of improved stability and electrochemically induced rearrangement in electrode morphology is clearly evidenced from the FESEM studies post charge-discharge cycles. These encouraging findings suggest PTh/MWCNT composite electrodes possess the desirable physical and electrochemical properties, to be considered as a potential polymer electrode for rechargeable Mg-battery.
Schematic representation of red-ox reactions occurring in the Mg-PTh/MWCNT cell consisting 1.0M Mg(ClO4)2/acetonitrile electrolyte and representative cyclic voltammetry of the cell over multiple number of cycles [Display omitted] .</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2021.139707</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cathodes ; Charge transport ; Chemical synthesis ; Composite materials ; Discharge ; Electrochemical analysis ; Electrode materials ; Electrodes ; Emission analysis ; Field emission ; Fourier transforms ; Lithium ; Magnesium ; Morphology ; Multi wall carbon nanotubes ; MWCNT ; Photoelectrons ; Polymer composite ; Polymer matrix composites ; Polymers ; Polythiophene ; Rechargeable batteries ; Rechargeable magnesium batteries ; Stability</subject><ispartof>Electrochimica acta, 2022-02, Vol.404, p.139707, Article 139707</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-8f40a0895b14995f7dde0e41aedf4b23ca72748a3f1d5a5dadf2e06164d30e6b3</citedby><cites>FETCH-LOGICAL-c343t-8f40a0895b14995f7dde0e41aedf4b23ca72748a3f1d5a5dadf2e06164d30e6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Raju, Vadthya</creatorcontrib><creatorcontrib>Rani, J Vatsala</creatorcontrib><creatorcontrib>Basak, Pratyay</creatorcontrib><title>One-dimensional polythiophene/multi-walled carbon nanotube composite cathodes for rechargeable magnesium battery: Evidence of improved stability and electrochemically induced rearrangement in electrode morphology</title><title>Electrochimica acta</title><description>•Single-phase polythiophene-MWCNT composite achieved through in-situ chemical oxidative synthetic procedure.•PTh/MWCNT application as cathode for rechargeable Mg battery demonstrates improved electrochemical activity over pristine PTh.•A high discharge capacity of ∼157 mAh.g−1 achieved at an applied current density of 60 mA.g−1, sustained for >100 cycles.•Post electrochemical analysis defines the multi-polaron state associated with polythiophene composite electrode.•Electrochemically induced rearrangement/reorganization in electrode morphology imparts improved stability.
This paper showcases polythiophene/multi-walled carbon nanotube (PTh/MWCNT), synthesized via chemical in-situ oxidative method as an active cathode material for rechargeable magnesium (Mg) battery. Successful formation of the composite material is confirmed by Fourier transform-Infra Red and X-ray diffraction analysis. Morphological evaluations of the cathode materials employing field emission scanning- and transmission- electron microscopy (FESEM and TEM) reveal the composites’ one-dimensional, homogeneous phase formation. The feasibility of PTh/MWCNT composite as a prospective positive electrode for rechargeable magnesium battery is assessed using cyclic voltammetry and galvanostatic charge-discharge. Comprehensive electrochemical studies demonstrate a significantly enhanced performance of the optimized PTh/MWCNT cathode composition. A considerably high specific capacity of ∼157 mAh.g−1 coupled with appreciable coulombic efficiency (∼70%) and excellent reversibility (>100 cycles), at high current density, indicates great promise. Analysis by X-ray photoelectron spectroscopy confirms the existence of multi-polaron state of the polymer/composites providing crucial clues towards proposing a plausible mechanism of charge transport and storage. Affirmation of improved stability and electrochemically induced rearrangement in electrode morphology is clearly evidenced from the FESEM studies post charge-discharge cycles. These encouraging findings suggest PTh/MWCNT composite electrodes possess the desirable physical and electrochemical properties, to be considered as a potential polymer electrode for rechargeable Mg-battery.
Schematic representation of red-ox reactions occurring in the Mg-PTh/MWCNT cell consisting 1.0M Mg(ClO4)2/acetonitrile electrolyte and representative cyclic voltammetry of the cell over multiple number of cycles [Display omitted] .</description><subject>Cathodes</subject><subject>Charge transport</subject><subject>Chemical synthesis</subject><subject>Composite materials</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Emission analysis</subject><subject>Field emission</subject><subject>Fourier transforms</subject><subject>Lithium</subject><subject>Magnesium</subject><subject>Morphology</subject><subject>Multi wall carbon nanotubes</subject><subject>MWCNT</subject><subject>Photoelectrons</subject><subject>Polymer composite</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Polythiophene</subject><subject>Rechargeable batteries</subject><subject>Rechargeable magnesium batteries</subject><subject>Stability</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUcFq3DAQNSWBbtJ8QwU9eyNZtmX3FkKaFgK5tGcxlsZrLbLkSvIW_2c_qNpu22thQIN482bee0XxntE9o6y9P-7RokqQa1_Riu0Z7wUVb4od6wQvedf0V8WOUsbLuu3at8VNjEdKqWgF3RU_Xx2W2szoovEOLFm83dJk_DKhw_t5tcmUP8Ba1ERBGLwjDpxP64BE-Xnx0aTcQZq8xkhGH0hANUE4IAwWyQwHh9GsMxkgJQzbR_J0MhqdQuJHYuYl-FPmjgkGY03aCDhNfisKXk04G5WXb8Q4vaqMCwghgDtgvjjl379QnVf5sEze-sP2rrgewUa8-_PeFt8-PX19_Fy-vD5_eXx4KRWveSq7saZAu74ZWN33zSi0Roo1A9RjPVRcgahE3QEfmW6g0aDHCmnL2lpziu3Ab4sPF94s4vuKMcmjX0N2Mcqq5Z0QrGmajBIXlAo-xoCjXIKZIWySUXmOUB7lvwjlOUJ5iTBPPlwmMYs4GQwyKnO2TptscpLam_9y_AJJDbGN</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Raju, Vadthya</creator><creator>Rani, J Vatsala</creator><creator>Basak, Pratyay</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20220201</creationdate><title>One-dimensional polythiophene/multi-walled carbon nanotube composite cathodes for rechargeable magnesium battery: Evidence of improved stability and electrochemically induced rearrangement in electrode morphology</title><author>Raju, Vadthya ; Rani, J Vatsala ; Basak, Pratyay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-8f40a0895b14995f7dde0e41aedf4b23ca72748a3f1d5a5dadf2e06164d30e6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cathodes</topic><topic>Charge transport</topic><topic>Chemical synthesis</topic><topic>Composite materials</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Emission analysis</topic><topic>Field emission</topic><topic>Fourier transforms</topic><topic>Lithium</topic><topic>Magnesium</topic><topic>Morphology</topic><topic>Multi wall carbon nanotubes</topic><topic>MWCNT</topic><topic>Photoelectrons</topic><topic>Polymer composite</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Polythiophene</topic><topic>Rechargeable batteries</topic><topic>Rechargeable magnesium batteries</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raju, Vadthya</creatorcontrib><creatorcontrib>Rani, J Vatsala</creatorcontrib><creatorcontrib>Basak, Pratyay</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raju, Vadthya</au><au>Rani, J Vatsala</au><au>Basak, Pratyay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-dimensional polythiophene/multi-walled carbon nanotube composite cathodes for rechargeable magnesium battery: Evidence of improved stability and electrochemically induced rearrangement in electrode morphology</atitle><jtitle>Electrochimica acta</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>404</volume><spage>139707</spage><pages>139707-</pages><artnum>139707</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•Single-phase polythiophene-MWCNT composite achieved through in-situ chemical oxidative synthetic procedure.•PTh/MWCNT application as cathode for rechargeable Mg battery demonstrates improved electrochemical activity over pristine PTh.•A high discharge capacity of ∼157 mAh.g−1 achieved at an applied current density of 60 mA.g−1, sustained for >100 cycles.•Post electrochemical analysis defines the multi-polaron state associated with polythiophene composite electrode.•Electrochemically induced rearrangement/reorganization in electrode morphology imparts improved stability.
This paper showcases polythiophene/multi-walled carbon nanotube (PTh/MWCNT), synthesized via chemical in-situ oxidative method as an active cathode material for rechargeable magnesium (Mg) battery. Successful formation of the composite material is confirmed by Fourier transform-Infra Red and X-ray diffraction analysis. Morphological evaluations of the cathode materials employing field emission scanning- and transmission- electron microscopy (FESEM and TEM) reveal the composites’ one-dimensional, homogeneous phase formation. The feasibility of PTh/MWCNT composite as a prospective positive electrode for rechargeable magnesium battery is assessed using cyclic voltammetry and galvanostatic charge-discharge. Comprehensive electrochemical studies demonstrate a significantly enhanced performance of the optimized PTh/MWCNT cathode composition. A considerably high specific capacity of ∼157 mAh.g−1 coupled with appreciable coulombic efficiency (∼70%) and excellent reversibility (>100 cycles), at high current density, indicates great promise. Analysis by X-ray photoelectron spectroscopy confirms the existence of multi-polaron state of the polymer/composites providing crucial clues towards proposing a plausible mechanism of charge transport and storage. Affirmation of improved stability and electrochemically induced rearrangement in electrode morphology is clearly evidenced from the FESEM studies post charge-discharge cycles. These encouraging findings suggest PTh/MWCNT composite electrodes possess the desirable physical and electrochemical properties, to be considered as a potential polymer electrode for rechargeable Mg-battery.
Schematic representation of red-ox reactions occurring in the Mg-PTh/MWCNT cell consisting 1.0M Mg(ClO4)2/acetonitrile electrolyte and representative cyclic voltammetry of the cell over multiple number of cycles [Display omitted] .</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2021.139707</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2022-02, Vol.404, p.139707, Article 139707 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2638771555 |
source | Elsevier |
subjects | Cathodes Charge transport Chemical synthesis Composite materials Discharge Electrochemical analysis Electrode materials Electrodes Emission analysis Field emission Fourier transforms Lithium Magnesium Morphology Multi wall carbon nanotubes MWCNT Photoelectrons Polymer composite Polymer matrix composites Polymers Polythiophene Rechargeable batteries Rechargeable magnesium batteries Stability |
title | One-dimensional polythiophene/multi-walled carbon nanotube composite cathodes for rechargeable magnesium battery: Evidence of improved stability and electrochemically induced rearrangement in electrode morphology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-dimensional%20polythiophene/multi-walled%20carbon%20nanotube%20composite%20cathodes%20for%20rechargeable%20magnesium%20battery:%20Evidence%20of%20improved%20stability%20and%20electrochemically%20induced%20rearrangement%20in%20electrode%20morphology&rft.jtitle=Electrochimica%20acta&rft.au=Raju,%20Vadthya&rft.date=2022-02-01&rft.volume=404&rft.spage=139707&rft.pages=139707-&rft.artnum=139707&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2021.139707&rft_dat=%3Cproquest_cross%3E2638771555%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-8f40a0895b14995f7dde0e41aedf4b23ca72748a3f1d5a5dadf2e06164d30e6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638771555&rft_id=info:pmid/&rfr_iscdi=true |