Loading…

One-dimensional polythiophene/multi-walled carbon nanotube composite cathodes for rechargeable magnesium battery: Evidence of improved stability and electrochemically induced rearrangement in electrode morphology

•Single-phase polythiophene-MWCNT composite achieved through in-situ chemical oxidative synthetic procedure.•PTh/MWCNT application as cathode for rechargeable Mg battery demonstrates improved electrochemical activity over pristine PTh.•A high discharge capacity of ∼157 mAh.g−1 achieved at an applied...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2022-02, Vol.404, p.139707, Article 139707
Main Authors: Raju, Vadthya, Rani, J Vatsala, Basak, Pratyay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-8f40a0895b14995f7dde0e41aedf4b23ca72748a3f1d5a5dadf2e06164d30e6b3
cites cdi_FETCH-LOGICAL-c343t-8f40a0895b14995f7dde0e41aedf4b23ca72748a3f1d5a5dadf2e06164d30e6b3
container_end_page
container_issue
container_start_page 139707
container_title Electrochimica acta
container_volume 404
creator Raju, Vadthya
Rani, J Vatsala
Basak, Pratyay
description •Single-phase polythiophene-MWCNT composite achieved through in-situ chemical oxidative synthetic procedure.•PTh/MWCNT application as cathode for rechargeable Mg battery demonstrates improved electrochemical activity over pristine PTh.•A high discharge capacity of ∼157 mAh.g−1 achieved at an applied current density of 60 mA.g−1, sustained for >100 cycles.•Post electrochemical analysis defines the multi-polaron state associated with polythiophene composite electrode.•Electrochemically induced rearrangement/reorganization in electrode morphology imparts improved stability. This paper showcases polythiophene/multi-walled carbon nanotube (PTh/MWCNT), synthesized via chemical in-situ oxidative method as an active cathode material for rechargeable magnesium (Mg) battery. Successful formation of the composite material is confirmed by Fourier transform-Infra Red and X-ray diffraction analysis. Morphological evaluations of the cathode materials employing field emission scanning- and transmission- electron microscopy (FESEM and TEM) reveal the composites’ one-dimensional, homogeneous phase formation. The feasibility of PTh/MWCNT composite as a prospective positive electrode for rechargeable magnesium battery is assessed using cyclic voltammetry and galvanostatic charge-discharge. Comprehensive electrochemical studies demonstrate a significantly enhanced performance of the optimized PTh/MWCNT cathode composition. A considerably high specific capacity of ∼157 mAh.g−1 coupled with appreciable coulombic efficiency (∼70%) and excellent reversibility (>100 cycles), at high current density, indicates great promise. Analysis by X-ray photoelectron spectroscopy confirms the existence of multi-polaron state of the polymer/composites providing crucial clues towards proposing a plausible mechanism of charge transport and storage. Affirmation of improved stability and electrochemically induced rearrangement in electrode morphology is clearly evidenced from the FESEM studies post charge-discharge cycles. These encouraging findings suggest PTh/MWCNT composite electrodes possess the desirable physical and electrochemical properties, to be considered as a potential polymer electrode for rechargeable Mg-battery. Schematic representation of red-ox reactions occurring in the Mg-PTh/MWCNT cell consisting 1.0M Mg(ClO4)2/acetonitrile electrolyte and representative cyclic voltammetry of the cell over multiple number of cycles [Display omitted] .
doi_str_mv 10.1016/j.electacta.2021.139707
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638771555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468621019915</els_id><sourcerecordid>2638771555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-8f40a0895b14995f7dde0e41aedf4b23ca72748a3f1d5a5dadf2e06164d30e6b3</originalsourceid><addsrcrecordid>eNqFUcFq3DAQNSWBbtJ8QwU9eyNZtmX3FkKaFgK5tGcxlsZrLbLkSvIW_2c_qNpu22thQIN482bee0XxntE9o6y9P-7RokqQa1_Riu0Z7wUVb4od6wQvedf0V8WOUsbLuu3at8VNjEdKqWgF3RU_Xx2W2szoovEOLFm83dJk_DKhw_t5tcmUP8Ba1ERBGLwjDpxP64BE-Xnx0aTcQZq8xkhGH0hANUE4IAwWyQwHh9GsMxkgJQzbR_J0MhqdQuJHYuYl-FPmjgkGY03aCDhNfisKXk04G5WXb8Q4vaqMCwghgDtgvjjl379QnVf5sEze-sP2rrgewUa8-_PeFt8-PX19_Fy-vD5_eXx4KRWveSq7saZAu74ZWN33zSi0Roo1A9RjPVRcgahE3QEfmW6g0aDHCmnL2lpziu3Ab4sPF94s4vuKMcmjX0N2Mcqq5Z0QrGmajBIXlAo-xoCjXIKZIWySUXmOUB7lvwjlOUJ5iTBPPlwmMYs4GQwyKnO2TptscpLam_9y_AJJDbGN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638771555</pqid></control><display><type>article</type><title>One-dimensional polythiophene/multi-walled carbon nanotube composite cathodes for rechargeable magnesium battery: Evidence of improved stability and electrochemically induced rearrangement in electrode morphology</title><source>Elsevier</source><creator>Raju, Vadthya ; Rani, J Vatsala ; Basak, Pratyay</creator><creatorcontrib>Raju, Vadthya ; Rani, J Vatsala ; Basak, Pratyay</creatorcontrib><description>•Single-phase polythiophene-MWCNT composite achieved through in-situ chemical oxidative synthetic procedure.•PTh/MWCNT application as cathode for rechargeable Mg battery demonstrates improved electrochemical activity over pristine PTh.•A high discharge capacity of ∼157 mAh.g−1 achieved at an applied current density of 60 mA.g−1, sustained for &gt;100 cycles.•Post electrochemical analysis defines the multi-polaron state associated with polythiophene composite electrode.•Electrochemically induced rearrangement/reorganization in electrode morphology imparts improved stability. This paper showcases polythiophene/multi-walled carbon nanotube (PTh/MWCNT), synthesized via chemical in-situ oxidative method as an active cathode material for rechargeable magnesium (Mg) battery. Successful formation of the composite material is confirmed by Fourier transform-Infra Red and X-ray diffraction analysis. Morphological evaluations of the cathode materials employing field emission scanning- and transmission- electron microscopy (FESEM and TEM) reveal the composites’ one-dimensional, homogeneous phase formation. The feasibility of PTh/MWCNT composite as a prospective positive electrode for rechargeable magnesium battery is assessed using cyclic voltammetry and galvanostatic charge-discharge. Comprehensive electrochemical studies demonstrate a significantly enhanced performance of the optimized PTh/MWCNT cathode composition. A considerably high specific capacity of ∼157 mAh.g−1 coupled with appreciable coulombic efficiency (∼70%) and excellent reversibility (&gt;100 cycles), at high current density, indicates great promise. Analysis by X-ray photoelectron spectroscopy confirms the existence of multi-polaron state of the polymer/composites providing crucial clues towards proposing a plausible mechanism of charge transport and storage. Affirmation of improved stability and electrochemically induced rearrangement in electrode morphology is clearly evidenced from the FESEM studies post charge-discharge cycles. These encouraging findings suggest PTh/MWCNT composite electrodes possess the desirable physical and electrochemical properties, to be considered as a potential polymer electrode for rechargeable Mg-battery. Schematic representation of red-ox reactions occurring in the Mg-PTh/MWCNT cell consisting 1.0M Mg(ClO4)2/acetonitrile electrolyte and representative cyclic voltammetry of the cell over multiple number of cycles [Display omitted] .</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2021.139707</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cathodes ; Charge transport ; Chemical synthesis ; Composite materials ; Discharge ; Electrochemical analysis ; Electrode materials ; Electrodes ; Emission analysis ; Field emission ; Fourier transforms ; Lithium ; Magnesium ; Morphology ; Multi wall carbon nanotubes ; MWCNT ; Photoelectrons ; Polymer composite ; Polymer matrix composites ; Polymers ; Polythiophene ; Rechargeable batteries ; Rechargeable magnesium batteries ; Stability</subject><ispartof>Electrochimica acta, 2022-02, Vol.404, p.139707, Article 139707</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-8f40a0895b14995f7dde0e41aedf4b23ca72748a3f1d5a5dadf2e06164d30e6b3</citedby><cites>FETCH-LOGICAL-c343t-8f40a0895b14995f7dde0e41aedf4b23ca72748a3f1d5a5dadf2e06164d30e6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Raju, Vadthya</creatorcontrib><creatorcontrib>Rani, J Vatsala</creatorcontrib><creatorcontrib>Basak, Pratyay</creatorcontrib><title>One-dimensional polythiophene/multi-walled carbon nanotube composite cathodes for rechargeable magnesium battery: Evidence of improved stability and electrochemically induced rearrangement in electrode morphology</title><title>Electrochimica acta</title><description>•Single-phase polythiophene-MWCNT composite achieved through in-situ chemical oxidative synthetic procedure.•PTh/MWCNT application as cathode for rechargeable Mg battery demonstrates improved electrochemical activity over pristine PTh.•A high discharge capacity of ∼157 mAh.g−1 achieved at an applied current density of 60 mA.g−1, sustained for &gt;100 cycles.•Post electrochemical analysis defines the multi-polaron state associated with polythiophene composite electrode.•Electrochemically induced rearrangement/reorganization in electrode morphology imparts improved stability. This paper showcases polythiophene/multi-walled carbon nanotube (PTh/MWCNT), synthesized via chemical in-situ oxidative method as an active cathode material for rechargeable magnesium (Mg) battery. Successful formation of the composite material is confirmed by Fourier transform-Infra Red and X-ray diffraction analysis. Morphological evaluations of the cathode materials employing field emission scanning- and transmission- electron microscopy (FESEM and TEM) reveal the composites’ one-dimensional, homogeneous phase formation. The feasibility of PTh/MWCNT composite as a prospective positive electrode for rechargeable magnesium battery is assessed using cyclic voltammetry and galvanostatic charge-discharge. Comprehensive electrochemical studies demonstrate a significantly enhanced performance of the optimized PTh/MWCNT cathode composition. A considerably high specific capacity of ∼157 mAh.g−1 coupled with appreciable coulombic efficiency (∼70%) and excellent reversibility (&gt;100 cycles), at high current density, indicates great promise. Analysis by X-ray photoelectron spectroscopy confirms the existence of multi-polaron state of the polymer/composites providing crucial clues towards proposing a plausible mechanism of charge transport and storage. Affirmation of improved stability and electrochemically induced rearrangement in electrode morphology is clearly evidenced from the FESEM studies post charge-discharge cycles. These encouraging findings suggest PTh/MWCNT composite electrodes possess the desirable physical and electrochemical properties, to be considered as a potential polymer electrode for rechargeable Mg-battery. Schematic representation of red-ox reactions occurring in the Mg-PTh/MWCNT cell consisting 1.0M Mg(ClO4)2/acetonitrile electrolyte and representative cyclic voltammetry of the cell over multiple number of cycles [Display omitted] .</description><subject>Cathodes</subject><subject>Charge transport</subject><subject>Chemical synthesis</subject><subject>Composite materials</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Emission analysis</subject><subject>Field emission</subject><subject>Fourier transforms</subject><subject>Lithium</subject><subject>Magnesium</subject><subject>Morphology</subject><subject>Multi wall carbon nanotubes</subject><subject>MWCNT</subject><subject>Photoelectrons</subject><subject>Polymer composite</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Polythiophene</subject><subject>Rechargeable batteries</subject><subject>Rechargeable magnesium batteries</subject><subject>Stability</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUcFq3DAQNSWBbtJ8QwU9eyNZtmX3FkKaFgK5tGcxlsZrLbLkSvIW_2c_qNpu22thQIN482bee0XxntE9o6y9P-7RokqQa1_Riu0Z7wUVb4od6wQvedf0V8WOUsbLuu3at8VNjEdKqWgF3RU_Xx2W2szoovEOLFm83dJk_DKhw_t5tcmUP8Ba1ERBGLwjDpxP64BE-Xnx0aTcQZq8xkhGH0hANUE4IAwWyQwHh9GsMxkgJQzbR_J0MhqdQuJHYuYl-FPmjgkGY03aCDhNfisKXk04G5WXb8Q4vaqMCwghgDtgvjjl379QnVf5sEze-sP2rrgewUa8-_PeFt8-PX19_Fy-vD5_eXx4KRWveSq7saZAu74ZWN33zSi0Roo1A9RjPVRcgahE3QEfmW6g0aDHCmnL2lpziu3Ab4sPF94s4vuKMcmjX0N2Mcqq5Z0QrGmajBIXlAo-xoCjXIKZIWySUXmOUB7lvwjlOUJ5iTBPPlwmMYs4GQwyKnO2TptscpLam_9y_AJJDbGN</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Raju, Vadthya</creator><creator>Rani, J Vatsala</creator><creator>Basak, Pratyay</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20220201</creationdate><title>One-dimensional polythiophene/multi-walled carbon nanotube composite cathodes for rechargeable magnesium battery: Evidence of improved stability and electrochemically induced rearrangement in electrode morphology</title><author>Raju, Vadthya ; Rani, J Vatsala ; Basak, Pratyay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-8f40a0895b14995f7dde0e41aedf4b23ca72748a3f1d5a5dadf2e06164d30e6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cathodes</topic><topic>Charge transport</topic><topic>Chemical synthesis</topic><topic>Composite materials</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Emission analysis</topic><topic>Field emission</topic><topic>Fourier transforms</topic><topic>Lithium</topic><topic>Magnesium</topic><topic>Morphology</topic><topic>Multi wall carbon nanotubes</topic><topic>MWCNT</topic><topic>Photoelectrons</topic><topic>Polymer composite</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Polythiophene</topic><topic>Rechargeable batteries</topic><topic>Rechargeable magnesium batteries</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raju, Vadthya</creatorcontrib><creatorcontrib>Rani, J Vatsala</creatorcontrib><creatorcontrib>Basak, Pratyay</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raju, Vadthya</au><au>Rani, J Vatsala</au><au>Basak, Pratyay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-dimensional polythiophene/multi-walled carbon nanotube composite cathodes for rechargeable magnesium battery: Evidence of improved stability and electrochemically induced rearrangement in electrode morphology</atitle><jtitle>Electrochimica acta</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>404</volume><spage>139707</spage><pages>139707-</pages><artnum>139707</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•Single-phase polythiophene-MWCNT composite achieved through in-situ chemical oxidative synthetic procedure.•PTh/MWCNT application as cathode for rechargeable Mg battery demonstrates improved electrochemical activity over pristine PTh.•A high discharge capacity of ∼157 mAh.g−1 achieved at an applied current density of 60 mA.g−1, sustained for &gt;100 cycles.•Post electrochemical analysis defines the multi-polaron state associated with polythiophene composite electrode.•Electrochemically induced rearrangement/reorganization in electrode morphology imparts improved stability. This paper showcases polythiophene/multi-walled carbon nanotube (PTh/MWCNT), synthesized via chemical in-situ oxidative method as an active cathode material for rechargeable magnesium (Mg) battery. Successful formation of the composite material is confirmed by Fourier transform-Infra Red and X-ray diffraction analysis. Morphological evaluations of the cathode materials employing field emission scanning- and transmission- electron microscopy (FESEM and TEM) reveal the composites’ one-dimensional, homogeneous phase formation. The feasibility of PTh/MWCNT composite as a prospective positive electrode for rechargeable magnesium battery is assessed using cyclic voltammetry and galvanostatic charge-discharge. Comprehensive electrochemical studies demonstrate a significantly enhanced performance of the optimized PTh/MWCNT cathode composition. A considerably high specific capacity of ∼157 mAh.g−1 coupled with appreciable coulombic efficiency (∼70%) and excellent reversibility (&gt;100 cycles), at high current density, indicates great promise. Analysis by X-ray photoelectron spectroscopy confirms the existence of multi-polaron state of the polymer/composites providing crucial clues towards proposing a plausible mechanism of charge transport and storage. Affirmation of improved stability and electrochemically induced rearrangement in electrode morphology is clearly evidenced from the FESEM studies post charge-discharge cycles. These encouraging findings suggest PTh/MWCNT composite electrodes possess the desirable physical and electrochemical properties, to be considered as a potential polymer electrode for rechargeable Mg-battery. Schematic representation of red-ox reactions occurring in the Mg-PTh/MWCNT cell consisting 1.0M Mg(ClO4)2/acetonitrile electrolyte and representative cyclic voltammetry of the cell over multiple number of cycles [Display omitted] .</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2021.139707</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2022-02, Vol.404, p.139707, Article 139707
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2638771555
source Elsevier
subjects Cathodes
Charge transport
Chemical synthesis
Composite materials
Discharge
Electrochemical analysis
Electrode materials
Electrodes
Emission analysis
Field emission
Fourier transforms
Lithium
Magnesium
Morphology
Multi wall carbon nanotubes
MWCNT
Photoelectrons
Polymer composite
Polymer matrix composites
Polymers
Polythiophene
Rechargeable batteries
Rechargeable magnesium batteries
Stability
title One-dimensional polythiophene/multi-walled carbon nanotube composite cathodes for rechargeable magnesium battery: Evidence of improved stability and electrochemically induced rearrangement in electrode morphology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-dimensional%20polythiophene/multi-walled%20carbon%20nanotube%20composite%20cathodes%20for%20rechargeable%20magnesium%20battery:%20Evidence%20of%20improved%20stability%20and%20electrochemically%20induced%20rearrangement%20in%20electrode%20morphology&rft.jtitle=Electrochimica%20acta&rft.au=Raju,%20Vadthya&rft.date=2022-02-01&rft.volume=404&rft.spage=139707&rft.pages=139707-&rft.artnum=139707&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2021.139707&rft_dat=%3Cproquest_cross%3E2638771555%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-8f40a0895b14995f7dde0e41aedf4b23ca72748a3f1d5a5dadf2e06164d30e6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638771555&rft_id=info:pmid/&rfr_iscdi=true