Loading…
Porous V2O3/C composite anodes with pseudocapacitive characteristics for lithium-ion capacitors
Vanadium trioxide materials have attracted great interest owing to their low cost and high theoretical lithium storage capacity. In this work, porous V2O3@C composites were prepared via a NaCl template-assisted freeze-drying strategy. Benefiting from the unique three-dimensional porous carbon-based...
Saved in:
Published in: | Carbon (New York) 2022-03, Vol.188, p.546-546 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vanadium trioxide materials have attracted great interest owing to their low cost and high theoretical lithium storage capacity. In this work, porous V2O3@C composites were prepared via a NaCl template-assisted freeze-drying strategy. Benefiting from the unique three-dimensional porous carbon-based structure, the V2O3@C composite anode exhibits a high-rate pseudocapacitive behavior. A lithium-ion capacitor (LIC) based on this V2O3@C composite anode and a commercial AC cathode was constructed. Results show that the as-constructed device exhibits high energy density, high power density as well as long cycling stability, indicating the great promise of our porous V2O3@C composites for the high-performance LICs. |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2021.12.010 |