Loading…

On Bipartite Graphs Having Minimum Fourth Adjacency Coefficient

Let G be a simple graph with order n and adjacency matrix A ( G ) . The characteristic polynomial of G is defined by ϕ ( G ; λ ) = det ( λ I - A ( G ) ) = ∑ i = 0 n a i ( G ) λ n - i , where a i ( G ) is called the i -th adjacency coefficient of G . Denote by B n , m the collection of all connected...

Full description

Saved in:
Bibliographic Details
Published in:Graphs and combinatorics 2022-06, Vol.38 (3), Article 60
Main Authors: Gong, Shi-Cai, Zhang, Li-Ping, Sun, Shao-Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-28761d95df05184d5e1efb9e30647a14f28b0fb521edc1264649ea7a05beca5f3
cites cdi_FETCH-LOGICAL-c319t-28761d95df05184d5e1efb9e30647a14f28b0fb521edc1264649ea7a05beca5f3
container_end_page
container_issue 3
container_start_page
container_title Graphs and combinatorics
container_volume 38
creator Gong, Shi-Cai
Zhang, Li-Ping
Sun, Shao-Wei
description Let G be a simple graph with order n and adjacency matrix A ( G ) . The characteristic polynomial of G is defined by ϕ ( G ; λ ) = det ( λ I - A ( G ) ) = ∑ i = 0 n a i ( G ) λ n - i , where a i ( G ) is called the i -th adjacency coefficient of G . Denote by B n , m the collection of all connected bipartite graphs having n vertices and m edges. A bipartite graph G is referred as 4-Sachs optimal if a 4 ( G ) = min { a 4 ( H ) ∣ H ∈ B n , m } . For any given integer pair ( n ,  m ), in this paper we investigate the 4-Sachs optimal bipartite graphs. Firstly, we show that each 4-Sachs optimal bipartite graph is a difference graph. Then we deduce some structural properties on 4-Sachs optimal bipartite graphs. Especially, we determine the unique 4-Sachs optimal bipartite ( n ,  m )-graphs for n ≥ 5 and n - 1 ≤ m ≤ 2 ( n - 2 ) . Finally, we provide a method to construct a class of cospectral difference graphs, which disprove a conjecture posed by Andelić et al. (J Czech Math 70:1125–1138, 2020).
doi_str_mv 10.1007/s00373-022-02461-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639022634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2639022634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-28761d95df05184d5e1efb9e30647a14f28b0fb521edc1264649ea7a05beca5f3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwscQ7s-iepT6hUtEUq6gXOlpPYrSuaBDtF6tvXECRuHFZ7-WZmdwi5RbhHgOIhAvCCZ8BYGpFjVpyREQouM6lQnJMRKMQMENUluYpxBwASBYzI47qhT74zofe9pYtgum2kS_Plmw199Y3fH_Z03h5Cv6XTemcq21RHOmutc77ytumvyYUzH9He_O4xeZ8_v82W2Wq9eJlNV1nFUfUZmxQ51krWLuVORC0tWlcqyyEXhUHh2KQEV0qGtq6Q5SIXyprCgCxtZaTjY3I3-Hah_TzY2OtduqpJkZrlXKXHcy4SxQaqCm2MwTrdBb834agR9HdReihKJ17_FKWLJOKDKCa42djwZ_2P6gSX92oT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639022634</pqid></control><display><type>article</type><title>On Bipartite Graphs Having Minimum Fourth Adjacency Coefficient</title><source>Springer Nature</source><creator>Gong, Shi-Cai ; Zhang, Li-Ping ; Sun, Shao-Wei</creator><creatorcontrib>Gong, Shi-Cai ; Zhang, Li-Ping ; Sun, Shao-Wei</creatorcontrib><description>Let G be a simple graph with order n and adjacency matrix A ( G ) . The characteristic polynomial of G is defined by ϕ ( G ; λ ) = det ( λ I - A ( G ) ) = ∑ i = 0 n a i ( G ) λ n - i , where a i ( G ) is called the i -th adjacency coefficient of G . Denote by B n , m the collection of all connected bipartite graphs having n vertices and m edges. A bipartite graph G is referred as 4-Sachs optimal if a 4 ( G ) = min { a 4 ( H ) ∣ H ∈ B n , m } . For any given integer pair ( n ,  m ), in this paper we investigate the 4-Sachs optimal bipartite graphs. Firstly, we show that each 4-Sachs optimal bipartite graph is a difference graph. Then we deduce some structural properties on 4-Sachs optimal bipartite graphs. Especially, we determine the unique 4-Sachs optimal bipartite ( n ,  m )-graphs for n ≥ 5 and n - 1 ≤ m ≤ 2 ( n - 2 ) . Finally, we provide a method to construct a class of cospectral difference graphs, which disprove a conjecture posed by Andelić et al. (J Czech Math 70:1125–1138, 2020).</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-022-02461-7</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Apexes ; Codes ; Combinatorics ; Engineering Design ; Graph theory ; Graphs ; Mathematics ; Mathematics and Statistics ; Original Paper ; Polynomials</subject><ispartof>Graphs and combinatorics, 2022-06, Vol.38 (3), Article 60</ispartof><rights>The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-28761d95df05184d5e1efb9e30647a14f28b0fb521edc1264649ea7a05beca5f3</citedby><cites>FETCH-LOGICAL-c319t-28761d95df05184d5e1efb9e30647a14f28b0fb521edc1264649ea7a05beca5f3</cites><orcidid>0000-0002-0635-8308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gong, Shi-Cai</creatorcontrib><creatorcontrib>Zhang, Li-Ping</creatorcontrib><creatorcontrib>Sun, Shao-Wei</creatorcontrib><title>On Bipartite Graphs Having Minimum Fourth Adjacency Coefficient</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>Let G be a simple graph with order n and adjacency matrix A ( G ) . The characteristic polynomial of G is defined by ϕ ( G ; λ ) = det ( λ I - A ( G ) ) = ∑ i = 0 n a i ( G ) λ n - i , where a i ( G ) is called the i -th adjacency coefficient of G . Denote by B n , m the collection of all connected bipartite graphs having n vertices and m edges. A bipartite graph G is referred as 4-Sachs optimal if a 4 ( G ) = min { a 4 ( H ) ∣ H ∈ B n , m } . For any given integer pair ( n ,  m ), in this paper we investigate the 4-Sachs optimal bipartite graphs. Firstly, we show that each 4-Sachs optimal bipartite graph is a difference graph. Then we deduce some structural properties on 4-Sachs optimal bipartite graphs. Especially, we determine the unique 4-Sachs optimal bipartite ( n ,  m )-graphs for n ≥ 5 and n - 1 ≤ m ≤ 2 ( n - 2 ) . Finally, we provide a method to construct a class of cospectral difference graphs, which disprove a conjecture posed by Andelić et al. (J Czech Math 70:1125–1138, 2020).</description><subject>Apexes</subject><subject>Codes</subject><subject>Combinatorics</subject><subject>Engineering Design</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Polynomials</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwApwscQ7s-iepT6hUtEUq6gXOlpPYrSuaBDtF6tvXECRuHFZ7-WZmdwi5RbhHgOIhAvCCZ8BYGpFjVpyREQouM6lQnJMRKMQMENUluYpxBwASBYzI47qhT74zofe9pYtgum2kS_Plmw199Y3fH_Z03h5Cv6XTemcq21RHOmutc77ytumvyYUzH9He_O4xeZ8_v82W2Wq9eJlNV1nFUfUZmxQ51krWLuVORC0tWlcqyyEXhUHh2KQEV0qGtq6Q5SIXyprCgCxtZaTjY3I3-Hah_TzY2OtduqpJkZrlXKXHcy4SxQaqCm2MwTrdBb834agR9HdReihKJ17_FKWLJOKDKCa42djwZ_2P6gSX92oT</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Gong, Shi-Cai</creator><creator>Zhang, Li-Ping</creator><creator>Sun, Shao-Wei</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0635-8308</orcidid></search><sort><creationdate>20220601</creationdate><title>On Bipartite Graphs Having Minimum Fourth Adjacency Coefficient</title><author>Gong, Shi-Cai ; Zhang, Li-Ping ; Sun, Shao-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-28761d95df05184d5e1efb9e30647a14f28b0fb521edc1264649ea7a05beca5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Codes</topic><topic>Combinatorics</topic><topic>Engineering Design</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Shi-Cai</creatorcontrib><creatorcontrib>Zhang, Li-Ping</creatorcontrib><creatorcontrib>Sun, Shao-Wei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Shi-Cai</au><au>Zhang, Li-Ping</au><au>Sun, Shao-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Bipartite Graphs Having Minimum Fourth Adjacency Coefficient</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>38</volume><issue>3</issue><artnum>60</artnum><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>Let G be a simple graph with order n and adjacency matrix A ( G ) . The characteristic polynomial of G is defined by ϕ ( G ; λ ) = det ( λ I - A ( G ) ) = ∑ i = 0 n a i ( G ) λ n - i , where a i ( G ) is called the i -th adjacency coefficient of G . Denote by B n , m the collection of all connected bipartite graphs having n vertices and m edges. A bipartite graph G is referred as 4-Sachs optimal if a 4 ( G ) = min { a 4 ( H ) ∣ H ∈ B n , m } . For any given integer pair ( n ,  m ), in this paper we investigate the 4-Sachs optimal bipartite graphs. Firstly, we show that each 4-Sachs optimal bipartite graph is a difference graph. Then we deduce some structural properties on 4-Sachs optimal bipartite graphs. Especially, we determine the unique 4-Sachs optimal bipartite ( n ,  m )-graphs for n ≥ 5 and n - 1 ≤ m ≤ 2 ( n - 2 ) . Finally, we provide a method to construct a class of cospectral difference graphs, which disprove a conjecture posed by Andelić et al. (J Czech Math 70:1125–1138, 2020).</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00373-022-02461-7</doi><orcidid>https://orcid.org/0000-0002-0635-8308</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0911-0119
ispartof Graphs and combinatorics, 2022-06, Vol.38 (3), Article 60
issn 0911-0119
1435-5914
language eng
recordid cdi_proquest_journals_2639022634
source Springer Nature
subjects Apexes
Codes
Combinatorics
Engineering Design
Graph theory
Graphs
Mathematics
Mathematics and Statistics
Original Paper
Polynomials
title On Bipartite Graphs Having Minimum Fourth Adjacency Coefficient
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Bipartite%20Graphs%20Having%20Minimum%20Fourth%20Adjacency%20Coefficient&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Gong,%20Shi-Cai&rft.date=2022-06-01&rft.volume=38&rft.issue=3&rft.artnum=60&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-022-02461-7&rft_dat=%3Cproquest_cross%3E2639022634%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-28761d95df05184d5e1efb9e30647a14f28b0fb521edc1264649ea7a05beca5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2639022634&rft_id=info:pmid/&rfr_iscdi=true