Loading…
Spatiotemporal air quality inference of low-cost sensor data: Evidence from multiple sensor testbeds
Recent advances in sensor and IoT technologies allow for denser and mobile air quality measurements. These measurements are still spatiotemporally sparse at city-level, but can be interpolated using data-driven techniques. This work presents validation results of two machine-learning models to infer...
Saved in:
Published in: | Environmental modelling & software : with environment data news 2022-03, Vol.149, p.105306, Article 105306 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-3a6b42879e1c723e1c78e7653cb8928f9b3a0e4b8466725fcfc9e262c22f91a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-3a6b42879e1c723e1c78e7653cb8928f9b3a0e4b8466725fcfc9e262c22f91a23 |
container_end_page | |
container_issue | |
container_start_page | 105306 |
container_title | Environmental modelling & software : with environment data news |
container_volume | 149 |
creator | Hofman, Jelle Do, Tien Huu Qin, Xuening Bonet, Esther Rodrigo Philips, Wilfried Deligiannis, Nikos La Manna, Valerio Panzica |
description | Recent advances in sensor and IoT technologies allow for denser and mobile air quality measurements. These measurements are still spatiotemporally sparse at city-level, but can be interpolated using data-driven techniques. This work presents validation results of two machine-learning models to infer air quality sensor data in both space and time. Temporal validation exercises are performed at available regulatory monitoring stations following the FAIRMODE protocol. Both models show scalable to different mobile datasets with comparable prediction performance for PM2.5 (R2 = 0.68–0.75, MAE = 2.99–2.82 μg m−3) and NO2 (R2 = 0.8–0.82, MAE = 8.81–9.83 μg m−3) in Utrecht and Antwerp. In Oakland (Atlanta), we observed a lower performance for NO2 (R2 = 0.46–0.41, MAE = 4.06–5.07) and BC (R2 = 0.31–0.28, MAE = 0.48–0.27), likely caused by the less representative monitoring coverage. Although comparable in terms of prediction performance, the Geographical Random Forest (GRF) model seems to achieve slightly better accuracies, while the correlations are typically higher for the Air Variational Graph Autoencoder (AVGAE) model. This work demonstrates the potential of data-driven techniques for spatiotemporal air quality inference of complementary sensor data. The observed performance metrics approach current state-of-the-art chemical transport models in terms of performance while needing much lower resources, computational power, infrastructure and processing time.
•Machine learning techniques can interpolate spatiotemporally sparse regulatory- and sensor-derived air quality data.•We present model validation results on different mobile datasets from Antwerp (BE), Utrecht (NL) and Oakland (US).•Following the FAIRMODE protocol, both models show to perform on different mobile datasets.•This work demonstrates the potential of data-driven techniques for spatiotemporal air quality inference of sensor data.•Ultimately, model performance still depends on the applied sensor performance and spatiotemporal monitoring coverage. |
doi_str_mv | 10.1016/j.envsoft.2022.105306 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639034317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815222000123</els_id><sourcerecordid>2639034317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-3a6b42879e1c723e1c78e7653cb8928f9b3a0e4b8466725fcfc9e262c22f91a23</originalsourceid><addsrcrecordid>eNqFUMtKxDAULaLgOPoJQsB1xzzatHUjMowPGHChrkOa3kBK23SSzMj8vakd127uvVzOg3OS5JbgFcGE37crGA7e6rCimNL4yxnmZ8mClAVLeUH5ebwZz9KS5PQyufK-xRjHO1skzccog7EB-tE62SFpHNrtZWfCEZlBg4NBAbIadfY7VdYH5GHw1qFGBvmANgfT_CK0sz3q910wYwd_mAA-1ND46-RCy87DzWkvk6_nzef6Nd2-v7ytn7apYqwIKZO8zmhZVEBUQdk0Syh4zlRdVrTUVc0khqwuMx5T5VppVQHlVFGqKyIpWyZ3s-7o7G4fzUVr926IloJyVmGWMVJEVD6jlLPeO9BidKaX7igIFlOhohWnQsVUqJgLjbzHmQcxwsGAE16ZKXxjHKggGmv-UfgB9U6Cqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639034317</pqid></control><display><type>article</type><title>Spatiotemporal air quality inference of low-cost sensor data: Evidence from multiple sensor testbeds</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hofman, Jelle ; Do, Tien Huu ; Qin, Xuening ; Bonet, Esther Rodrigo ; Philips, Wilfried ; Deligiannis, Nikos ; La Manna, Valerio Panzica</creator><creatorcontrib>Hofman, Jelle ; Do, Tien Huu ; Qin, Xuening ; Bonet, Esther Rodrigo ; Philips, Wilfried ; Deligiannis, Nikos ; La Manna, Valerio Panzica</creatorcontrib><description>Recent advances in sensor and IoT technologies allow for denser and mobile air quality measurements. These measurements are still spatiotemporally sparse at city-level, but can be interpolated using data-driven techniques. This work presents validation results of two machine-learning models to infer air quality sensor data in both space and time. Temporal validation exercises are performed at available regulatory monitoring stations following the FAIRMODE protocol. Both models show scalable to different mobile datasets with comparable prediction performance for PM2.5 (R2 = 0.68–0.75, MAE = 2.99–2.82 μg m−3) and NO2 (R2 = 0.8–0.82, MAE = 8.81–9.83 μg m−3) in Utrecht and Antwerp. In Oakland (Atlanta), we observed a lower performance for NO2 (R2 = 0.46–0.41, MAE = 4.06–5.07) and BC (R2 = 0.31–0.28, MAE = 0.48–0.27), likely caused by the less representative monitoring coverage. Although comparable in terms of prediction performance, the Geographical Random Forest (GRF) model seems to achieve slightly better accuracies, while the correlations are typically higher for the Air Variational Graph Autoencoder (AVGAE) model. This work demonstrates the potential of data-driven techniques for spatiotemporal air quality inference of complementary sensor data. The observed performance metrics approach current state-of-the-art chemical transport models in terms of performance while needing much lower resources, computational power, infrastructure and processing time.
•Machine learning techniques can interpolate spatiotemporally sparse regulatory- and sensor-derived air quality data.•We present model validation results on different mobile datasets from Antwerp (BE), Utrecht (NL) and Oakland (US).•Following the FAIRMODE protocol, both models show to perform on different mobile datasets.•This work demonstrates the potential of data-driven techniques for spatiotemporal air quality inference of sensor data.•Ultimately, model performance still depends on the applied sensor performance and spatiotemporal monitoring coverage.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2022.105306</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Air quality ; Air quality measurements ; Chemical transport ; Computer applications ; Inference ; IoT ; Machine learning ; Mobile ; Monitoring ; Nitrogen dioxide ; Particulate matter ; Performance measurement ; Performance prediction ; Sensors ; Urban</subject><ispartof>Environmental modelling & software : with environment data news, 2022-03, Vol.149, p.105306, Article 105306</ispartof><rights>2022</rights><rights>Copyright Elsevier Science Ltd. Mar 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-3a6b42879e1c723e1c78e7653cb8928f9b3a0e4b8466725fcfc9e262c22f91a23</citedby><cites>FETCH-LOGICAL-c337t-3a6b42879e1c723e1c78e7653cb8928f9b3a0e4b8466725fcfc9e262c22f91a23</cites><orcidid>0000-0001-8643-3816 ; 0000-0003-4129-3295 ; 0000-0002-3450-6531 ; 0000-0002-7346-5496 ; 0000-0001-9300-5860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hofman, Jelle</creatorcontrib><creatorcontrib>Do, Tien Huu</creatorcontrib><creatorcontrib>Qin, Xuening</creatorcontrib><creatorcontrib>Bonet, Esther Rodrigo</creatorcontrib><creatorcontrib>Philips, Wilfried</creatorcontrib><creatorcontrib>Deligiannis, Nikos</creatorcontrib><creatorcontrib>La Manna, Valerio Panzica</creatorcontrib><title>Spatiotemporal air quality inference of low-cost sensor data: Evidence from multiple sensor testbeds</title><title>Environmental modelling & software : with environment data news</title><description>Recent advances in sensor and IoT technologies allow for denser and mobile air quality measurements. These measurements are still spatiotemporally sparse at city-level, but can be interpolated using data-driven techniques. This work presents validation results of two machine-learning models to infer air quality sensor data in both space and time. Temporal validation exercises are performed at available regulatory monitoring stations following the FAIRMODE protocol. Both models show scalable to different mobile datasets with comparable prediction performance for PM2.5 (R2 = 0.68–0.75, MAE = 2.99–2.82 μg m−3) and NO2 (R2 = 0.8–0.82, MAE = 8.81–9.83 μg m−3) in Utrecht and Antwerp. In Oakland (Atlanta), we observed a lower performance for NO2 (R2 = 0.46–0.41, MAE = 4.06–5.07) and BC (R2 = 0.31–0.28, MAE = 0.48–0.27), likely caused by the less representative monitoring coverage. Although comparable in terms of prediction performance, the Geographical Random Forest (GRF) model seems to achieve slightly better accuracies, while the correlations are typically higher for the Air Variational Graph Autoencoder (AVGAE) model. This work demonstrates the potential of data-driven techniques for spatiotemporal air quality inference of complementary sensor data. The observed performance metrics approach current state-of-the-art chemical transport models in terms of performance while needing much lower resources, computational power, infrastructure and processing time.
•Machine learning techniques can interpolate spatiotemporally sparse regulatory- and sensor-derived air quality data.•We present model validation results on different mobile datasets from Antwerp (BE), Utrecht (NL) and Oakland (US).•Following the FAIRMODE protocol, both models show to perform on different mobile datasets.•This work demonstrates the potential of data-driven techniques for spatiotemporal air quality inference of sensor data.•Ultimately, model performance still depends on the applied sensor performance and spatiotemporal monitoring coverage.</description><subject>Air quality</subject><subject>Air quality measurements</subject><subject>Chemical transport</subject><subject>Computer applications</subject><subject>Inference</subject><subject>IoT</subject><subject>Machine learning</subject><subject>Mobile</subject><subject>Monitoring</subject><subject>Nitrogen dioxide</subject><subject>Particulate matter</subject><subject>Performance measurement</subject><subject>Performance prediction</subject><subject>Sensors</subject><subject>Urban</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKxDAULaLgOPoJQsB1xzzatHUjMowPGHChrkOa3kBK23SSzMj8vakd127uvVzOg3OS5JbgFcGE37crGA7e6rCimNL4yxnmZ8mClAVLeUH5ebwZz9KS5PQyufK-xRjHO1skzccog7EB-tE62SFpHNrtZWfCEZlBg4NBAbIadfY7VdYH5GHw1qFGBvmANgfT_CK0sz3q910wYwd_mAA-1ND46-RCy87DzWkvk6_nzef6Nd2-v7ytn7apYqwIKZO8zmhZVEBUQdk0Syh4zlRdVrTUVc0khqwuMx5T5VppVQHlVFGqKyIpWyZ3s-7o7G4fzUVr926IloJyVmGWMVJEVD6jlLPeO9BidKaX7igIFlOhohWnQsVUqJgLjbzHmQcxwsGAE16ZKXxjHKggGmv-UfgB9U6Cqw</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Hofman, Jelle</creator><creator>Do, Tien Huu</creator><creator>Qin, Xuening</creator><creator>Bonet, Esther Rodrigo</creator><creator>Philips, Wilfried</creator><creator>Deligiannis, Nikos</creator><creator>La Manna, Valerio Panzica</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8643-3816</orcidid><orcidid>https://orcid.org/0000-0003-4129-3295</orcidid><orcidid>https://orcid.org/0000-0002-3450-6531</orcidid><orcidid>https://orcid.org/0000-0002-7346-5496</orcidid><orcidid>https://orcid.org/0000-0001-9300-5860</orcidid></search><sort><creationdate>202203</creationdate><title>Spatiotemporal air quality inference of low-cost sensor data: Evidence from multiple sensor testbeds</title><author>Hofman, Jelle ; Do, Tien Huu ; Qin, Xuening ; Bonet, Esther Rodrigo ; Philips, Wilfried ; Deligiannis, Nikos ; La Manna, Valerio Panzica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-3a6b42879e1c723e1c78e7653cb8928f9b3a0e4b8466725fcfc9e262c22f91a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air quality</topic><topic>Air quality measurements</topic><topic>Chemical transport</topic><topic>Computer applications</topic><topic>Inference</topic><topic>IoT</topic><topic>Machine learning</topic><topic>Mobile</topic><topic>Monitoring</topic><topic>Nitrogen dioxide</topic><topic>Particulate matter</topic><topic>Performance measurement</topic><topic>Performance prediction</topic><topic>Sensors</topic><topic>Urban</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hofman, Jelle</creatorcontrib><creatorcontrib>Do, Tien Huu</creatorcontrib><creatorcontrib>Qin, Xuening</creatorcontrib><creatorcontrib>Bonet, Esther Rodrigo</creatorcontrib><creatorcontrib>Philips, Wilfried</creatorcontrib><creatorcontrib>Deligiannis, Nikos</creatorcontrib><creatorcontrib>La Manna, Valerio Panzica</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling & software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hofman, Jelle</au><au>Do, Tien Huu</au><au>Qin, Xuening</au><au>Bonet, Esther Rodrigo</au><au>Philips, Wilfried</au><au>Deligiannis, Nikos</au><au>La Manna, Valerio Panzica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal air quality inference of low-cost sensor data: Evidence from multiple sensor testbeds</atitle><jtitle>Environmental modelling & software : with environment data news</jtitle><date>2022-03</date><risdate>2022</risdate><volume>149</volume><spage>105306</spage><pages>105306-</pages><artnum>105306</artnum><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>Recent advances in sensor and IoT technologies allow for denser and mobile air quality measurements. These measurements are still spatiotemporally sparse at city-level, but can be interpolated using data-driven techniques. This work presents validation results of two machine-learning models to infer air quality sensor data in both space and time. Temporal validation exercises are performed at available regulatory monitoring stations following the FAIRMODE protocol. Both models show scalable to different mobile datasets with comparable prediction performance for PM2.5 (R2 = 0.68–0.75, MAE = 2.99–2.82 μg m−3) and NO2 (R2 = 0.8–0.82, MAE = 8.81–9.83 μg m−3) in Utrecht and Antwerp. In Oakland (Atlanta), we observed a lower performance for NO2 (R2 = 0.46–0.41, MAE = 4.06–5.07) and BC (R2 = 0.31–0.28, MAE = 0.48–0.27), likely caused by the less representative monitoring coverage. Although comparable in terms of prediction performance, the Geographical Random Forest (GRF) model seems to achieve slightly better accuracies, while the correlations are typically higher for the Air Variational Graph Autoencoder (AVGAE) model. This work demonstrates the potential of data-driven techniques for spatiotemporal air quality inference of complementary sensor data. The observed performance metrics approach current state-of-the-art chemical transport models in terms of performance while needing much lower resources, computational power, infrastructure and processing time.
•Machine learning techniques can interpolate spatiotemporally sparse regulatory- and sensor-derived air quality data.•We present model validation results on different mobile datasets from Antwerp (BE), Utrecht (NL) and Oakland (US).•Following the FAIRMODE protocol, both models show to perform on different mobile datasets.•This work demonstrates the potential of data-driven techniques for spatiotemporal air quality inference of sensor data.•Ultimately, model performance still depends on the applied sensor performance and spatiotemporal monitoring coverage.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2022.105306</doi><orcidid>https://orcid.org/0000-0001-8643-3816</orcidid><orcidid>https://orcid.org/0000-0003-4129-3295</orcidid><orcidid>https://orcid.org/0000-0002-3450-6531</orcidid><orcidid>https://orcid.org/0000-0002-7346-5496</orcidid><orcidid>https://orcid.org/0000-0001-9300-5860</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-8152 |
ispartof | Environmental modelling & software : with environment data news, 2022-03, Vol.149, p.105306, Article 105306 |
issn | 1364-8152 1873-6726 |
language | eng |
recordid | cdi_proquest_journals_2639034317 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Air quality Air quality measurements Chemical transport Computer applications Inference IoT Machine learning Mobile Monitoring Nitrogen dioxide Particulate matter Performance measurement Performance prediction Sensors Urban |
title | Spatiotemporal air quality inference of low-cost sensor data: Evidence from multiple sensor testbeds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20air%20quality%20inference%20of%20low-cost%20sensor%20data:%20Evidence%20from%20multiple%20sensor%20testbeds&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Hofman,%20Jelle&rft.date=2022-03&rft.volume=149&rft.spage=105306&rft.pages=105306-&rft.artnum=105306&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2022.105306&rft_dat=%3Cproquest_cross%3E2639034317%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-3a6b42879e1c723e1c78e7653cb8928f9b3a0e4b8466725fcfc9e262c22f91a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2639034317&rft_id=info:pmid/&rfr_iscdi=true |