Loading…

Spatiotemporal air quality inference of low-cost sensor data: Evidence from multiple sensor testbeds

Recent advances in sensor and IoT technologies allow for denser and mobile air quality measurements. These measurements are still spatiotemporally sparse at city-level, but can be interpolated using data-driven techniques. This work presents validation results of two machine-learning models to infer...

Full description

Saved in:
Bibliographic Details
Published in:Environmental modelling & software : with environment data news 2022-03, Vol.149, p.105306, Article 105306
Main Authors: Hofman, Jelle, Do, Tien Huu, Qin, Xuening, Bonet, Esther Rodrigo, Philips, Wilfried, Deligiannis, Nikos, La Manna, Valerio Panzica
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-3a6b42879e1c723e1c78e7653cb8928f9b3a0e4b8466725fcfc9e262c22f91a23
cites cdi_FETCH-LOGICAL-c337t-3a6b42879e1c723e1c78e7653cb8928f9b3a0e4b8466725fcfc9e262c22f91a23
container_end_page
container_issue
container_start_page 105306
container_title Environmental modelling & software : with environment data news
container_volume 149
creator Hofman, Jelle
Do, Tien Huu
Qin, Xuening
Bonet, Esther Rodrigo
Philips, Wilfried
Deligiannis, Nikos
La Manna, Valerio Panzica
description Recent advances in sensor and IoT technologies allow for denser and mobile air quality measurements. These measurements are still spatiotemporally sparse at city-level, but can be interpolated using data-driven techniques. This work presents validation results of two machine-learning models to infer air quality sensor data in both space and time. Temporal validation exercises are performed at available regulatory monitoring stations following the FAIRMODE protocol. Both models show scalable to different mobile datasets with comparable prediction performance for PM2.5 (R2 = 0.68–0.75, MAE = 2.99–2.82 μg m−3) and NO2 (R2 = 0.8–0.82, MAE = 8.81–9.83 μg m−3) in Utrecht and Antwerp. In Oakland (Atlanta), we observed a lower performance for NO2 (R2 = 0.46–0.41, MAE = 4.06–5.07) and BC (R2 = 0.31–0.28, MAE = 0.48–0.27), likely caused by the less representative monitoring coverage. Although comparable in terms of prediction performance, the Geographical Random Forest (GRF) model seems to achieve slightly better accuracies, while the correlations are typically higher for the Air Variational Graph Autoencoder (AVGAE) model. This work demonstrates the potential of data-driven techniques for spatiotemporal air quality inference of complementary sensor data. The observed performance metrics approach current state-of-the-art chemical transport models in terms of performance while needing much lower resources, computational power, infrastructure and processing time. •Machine learning techniques can interpolate spatiotemporally sparse regulatory- and sensor-derived air quality data.•We present model validation results on different mobile datasets from Antwerp (BE), Utrecht (NL) and Oakland (US).•Following the FAIRMODE protocol, both models show to perform on different mobile datasets.•This work demonstrates the potential of data-driven techniques for spatiotemporal air quality inference of sensor data.•Ultimately, model performance still depends on the applied sensor performance and spatiotemporal monitoring coverage.
doi_str_mv 10.1016/j.envsoft.2022.105306
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639034317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815222000123</els_id><sourcerecordid>2639034317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-3a6b42879e1c723e1c78e7653cb8928f9b3a0e4b8466725fcfc9e262c22f91a23</originalsourceid><addsrcrecordid>eNqFUMtKxDAULaLgOPoJQsB1xzzatHUjMowPGHChrkOa3kBK23SSzMj8vakd127uvVzOg3OS5JbgFcGE37crGA7e6rCimNL4yxnmZ8mClAVLeUH5ebwZz9KS5PQyufK-xRjHO1skzccog7EB-tE62SFpHNrtZWfCEZlBg4NBAbIadfY7VdYH5GHw1qFGBvmANgfT_CK0sz3q910wYwd_mAA-1ND46-RCy87DzWkvk6_nzef6Nd2-v7ytn7apYqwIKZO8zmhZVEBUQdk0Syh4zlRdVrTUVc0khqwuMx5T5VppVQHlVFGqKyIpWyZ3s-7o7G4fzUVr926IloJyVmGWMVJEVD6jlLPeO9BidKaX7igIFlOhohWnQsVUqJgLjbzHmQcxwsGAE16ZKXxjHKggGmv-UfgB9U6Cqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639034317</pqid></control><display><type>article</type><title>Spatiotemporal air quality inference of low-cost sensor data: Evidence from multiple sensor testbeds</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hofman, Jelle ; Do, Tien Huu ; Qin, Xuening ; Bonet, Esther Rodrigo ; Philips, Wilfried ; Deligiannis, Nikos ; La Manna, Valerio Panzica</creator><creatorcontrib>Hofman, Jelle ; Do, Tien Huu ; Qin, Xuening ; Bonet, Esther Rodrigo ; Philips, Wilfried ; Deligiannis, Nikos ; La Manna, Valerio Panzica</creatorcontrib><description>Recent advances in sensor and IoT technologies allow for denser and mobile air quality measurements. These measurements are still spatiotemporally sparse at city-level, but can be interpolated using data-driven techniques. This work presents validation results of two machine-learning models to infer air quality sensor data in both space and time. Temporal validation exercises are performed at available regulatory monitoring stations following the FAIRMODE protocol. Both models show scalable to different mobile datasets with comparable prediction performance for PM2.5 (R2 = 0.68–0.75, MAE = 2.99–2.82 μg m−3) and NO2 (R2 = 0.8–0.82, MAE = 8.81–9.83 μg m−3) in Utrecht and Antwerp. In Oakland (Atlanta), we observed a lower performance for NO2 (R2 = 0.46–0.41, MAE = 4.06–5.07) and BC (R2 = 0.31–0.28, MAE = 0.48–0.27), likely caused by the less representative monitoring coverage. Although comparable in terms of prediction performance, the Geographical Random Forest (GRF) model seems to achieve slightly better accuracies, while the correlations are typically higher for the Air Variational Graph Autoencoder (AVGAE) model. This work demonstrates the potential of data-driven techniques for spatiotemporal air quality inference of complementary sensor data. The observed performance metrics approach current state-of-the-art chemical transport models in terms of performance while needing much lower resources, computational power, infrastructure and processing time. •Machine learning techniques can interpolate spatiotemporally sparse regulatory- and sensor-derived air quality data.•We present model validation results on different mobile datasets from Antwerp (BE), Utrecht (NL) and Oakland (US).•Following the FAIRMODE protocol, both models show to perform on different mobile datasets.•This work demonstrates the potential of data-driven techniques for spatiotemporal air quality inference of sensor data.•Ultimately, model performance still depends on the applied sensor performance and spatiotemporal monitoring coverage.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2022.105306</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Air quality ; Air quality measurements ; Chemical transport ; Computer applications ; Inference ; IoT ; Machine learning ; Mobile ; Monitoring ; Nitrogen dioxide ; Particulate matter ; Performance measurement ; Performance prediction ; Sensors ; Urban</subject><ispartof>Environmental modelling &amp; software : with environment data news, 2022-03, Vol.149, p.105306, Article 105306</ispartof><rights>2022</rights><rights>Copyright Elsevier Science Ltd. Mar 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-3a6b42879e1c723e1c78e7653cb8928f9b3a0e4b8466725fcfc9e262c22f91a23</citedby><cites>FETCH-LOGICAL-c337t-3a6b42879e1c723e1c78e7653cb8928f9b3a0e4b8466725fcfc9e262c22f91a23</cites><orcidid>0000-0001-8643-3816 ; 0000-0003-4129-3295 ; 0000-0002-3450-6531 ; 0000-0002-7346-5496 ; 0000-0001-9300-5860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hofman, Jelle</creatorcontrib><creatorcontrib>Do, Tien Huu</creatorcontrib><creatorcontrib>Qin, Xuening</creatorcontrib><creatorcontrib>Bonet, Esther Rodrigo</creatorcontrib><creatorcontrib>Philips, Wilfried</creatorcontrib><creatorcontrib>Deligiannis, Nikos</creatorcontrib><creatorcontrib>La Manna, Valerio Panzica</creatorcontrib><title>Spatiotemporal air quality inference of low-cost sensor data: Evidence from multiple sensor testbeds</title><title>Environmental modelling &amp; software : with environment data news</title><description>Recent advances in sensor and IoT technologies allow for denser and mobile air quality measurements. These measurements are still spatiotemporally sparse at city-level, but can be interpolated using data-driven techniques. This work presents validation results of two machine-learning models to infer air quality sensor data in both space and time. Temporal validation exercises are performed at available regulatory monitoring stations following the FAIRMODE protocol. Both models show scalable to different mobile datasets with comparable prediction performance for PM2.5 (R2 = 0.68–0.75, MAE = 2.99–2.82 μg m−3) and NO2 (R2 = 0.8–0.82, MAE = 8.81–9.83 μg m−3) in Utrecht and Antwerp. In Oakland (Atlanta), we observed a lower performance for NO2 (R2 = 0.46–0.41, MAE = 4.06–5.07) and BC (R2 = 0.31–0.28, MAE = 0.48–0.27), likely caused by the less representative monitoring coverage. Although comparable in terms of prediction performance, the Geographical Random Forest (GRF) model seems to achieve slightly better accuracies, while the correlations are typically higher for the Air Variational Graph Autoencoder (AVGAE) model. This work demonstrates the potential of data-driven techniques for spatiotemporal air quality inference of complementary sensor data. The observed performance metrics approach current state-of-the-art chemical transport models in terms of performance while needing much lower resources, computational power, infrastructure and processing time. •Machine learning techniques can interpolate spatiotemporally sparse regulatory- and sensor-derived air quality data.•We present model validation results on different mobile datasets from Antwerp (BE), Utrecht (NL) and Oakland (US).•Following the FAIRMODE protocol, both models show to perform on different mobile datasets.•This work demonstrates the potential of data-driven techniques for spatiotemporal air quality inference of sensor data.•Ultimately, model performance still depends on the applied sensor performance and spatiotemporal monitoring coverage.</description><subject>Air quality</subject><subject>Air quality measurements</subject><subject>Chemical transport</subject><subject>Computer applications</subject><subject>Inference</subject><subject>IoT</subject><subject>Machine learning</subject><subject>Mobile</subject><subject>Monitoring</subject><subject>Nitrogen dioxide</subject><subject>Particulate matter</subject><subject>Performance measurement</subject><subject>Performance prediction</subject><subject>Sensors</subject><subject>Urban</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKxDAULaLgOPoJQsB1xzzatHUjMowPGHChrkOa3kBK23SSzMj8vakd127uvVzOg3OS5JbgFcGE37crGA7e6rCimNL4yxnmZ8mClAVLeUH5ebwZz9KS5PQyufK-xRjHO1skzccog7EB-tE62SFpHNrtZWfCEZlBg4NBAbIadfY7VdYH5GHw1qFGBvmANgfT_CK0sz3q910wYwd_mAA-1ND46-RCy87DzWkvk6_nzef6Nd2-v7ytn7apYqwIKZO8zmhZVEBUQdk0Syh4zlRdVrTUVc0khqwuMx5T5VppVQHlVFGqKyIpWyZ3s-7o7G4fzUVr926IloJyVmGWMVJEVD6jlLPeO9BidKaX7igIFlOhohWnQsVUqJgLjbzHmQcxwsGAE16ZKXxjHKggGmv-UfgB9U6Cqw</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Hofman, Jelle</creator><creator>Do, Tien Huu</creator><creator>Qin, Xuening</creator><creator>Bonet, Esther Rodrigo</creator><creator>Philips, Wilfried</creator><creator>Deligiannis, Nikos</creator><creator>La Manna, Valerio Panzica</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8643-3816</orcidid><orcidid>https://orcid.org/0000-0003-4129-3295</orcidid><orcidid>https://orcid.org/0000-0002-3450-6531</orcidid><orcidid>https://orcid.org/0000-0002-7346-5496</orcidid><orcidid>https://orcid.org/0000-0001-9300-5860</orcidid></search><sort><creationdate>202203</creationdate><title>Spatiotemporal air quality inference of low-cost sensor data: Evidence from multiple sensor testbeds</title><author>Hofman, Jelle ; Do, Tien Huu ; Qin, Xuening ; Bonet, Esther Rodrigo ; Philips, Wilfried ; Deligiannis, Nikos ; La Manna, Valerio Panzica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-3a6b42879e1c723e1c78e7653cb8928f9b3a0e4b8466725fcfc9e262c22f91a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air quality</topic><topic>Air quality measurements</topic><topic>Chemical transport</topic><topic>Computer applications</topic><topic>Inference</topic><topic>IoT</topic><topic>Machine learning</topic><topic>Mobile</topic><topic>Monitoring</topic><topic>Nitrogen dioxide</topic><topic>Particulate matter</topic><topic>Performance measurement</topic><topic>Performance prediction</topic><topic>Sensors</topic><topic>Urban</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hofman, Jelle</creatorcontrib><creatorcontrib>Do, Tien Huu</creatorcontrib><creatorcontrib>Qin, Xuening</creatorcontrib><creatorcontrib>Bonet, Esther Rodrigo</creatorcontrib><creatorcontrib>Philips, Wilfried</creatorcontrib><creatorcontrib>Deligiannis, Nikos</creatorcontrib><creatorcontrib>La Manna, Valerio Panzica</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling &amp; software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hofman, Jelle</au><au>Do, Tien Huu</au><au>Qin, Xuening</au><au>Bonet, Esther Rodrigo</au><au>Philips, Wilfried</au><au>Deligiannis, Nikos</au><au>La Manna, Valerio Panzica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal air quality inference of low-cost sensor data: Evidence from multiple sensor testbeds</atitle><jtitle>Environmental modelling &amp; software : with environment data news</jtitle><date>2022-03</date><risdate>2022</risdate><volume>149</volume><spage>105306</spage><pages>105306-</pages><artnum>105306</artnum><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>Recent advances in sensor and IoT technologies allow for denser and mobile air quality measurements. These measurements are still spatiotemporally sparse at city-level, but can be interpolated using data-driven techniques. This work presents validation results of two machine-learning models to infer air quality sensor data in both space and time. Temporal validation exercises are performed at available regulatory monitoring stations following the FAIRMODE protocol. Both models show scalable to different mobile datasets with comparable prediction performance for PM2.5 (R2 = 0.68–0.75, MAE = 2.99–2.82 μg m−3) and NO2 (R2 = 0.8–0.82, MAE = 8.81–9.83 μg m−3) in Utrecht and Antwerp. In Oakland (Atlanta), we observed a lower performance for NO2 (R2 = 0.46–0.41, MAE = 4.06–5.07) and BC (R2 = 0.31–0.28, MAE = 0.48–0.27), likely caused by the less representative monitoring coverage. Although comparable in terms of prediction performance, the Geographical Random Forest (GRF) model seems to achieve slightly better accuracies, while the correlations are typically higher for the Air Variational Graph Autoencoder (AVGAE) model. This work demonstrates the potential of data-driven techniques for spatiotemporal air quality inference of complementary sensor data. The observed performance metrics approach current state-of-the-art chemical transport models in terms of performance while needing much lower resources, computational power, infrastructure and processing time. •Machine learning techniques can interpolate spatiotemporally sparse regulatory- and sensor-derived air quality data.•We present model validation results on different mobile datasets from Antwerp (BE), Utrecht (NL) and Oakland (US).•Following the FAIRMODE protocol, both models show to perform on different mobile datasets.•This work demonstrates the potential of data-driven techniques for spatiotemporal air quality inference of sensor data.•Ultimately, model performance still depends on the applied sensor performance and spatiotemporal monitoring coverage.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2022.105306</doi><orcidid>https://orcid.org/0000-0001-8643-3816</orcidid><orcidid>https://orcid.org/0000-0003-4129-3295</orcidid><orcidid>https://orcid.org/0000-0002-3450-6531</orcidid><orcidid>https://orcid.org/0000-0002-7346-5496</orcidid><orcidid>https://orcid.org/0000-0001-9300-5860</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1364-8152
ispartof Environmental modelling & software : with environment data news, 2022-03, Vol.149, p.105306, Article 105306
issn 1364-8152
1873-6726
language eng
recordid cdi_proquest_journals_2639034317
source ScienceDirect Freedom Collection 2022-2024
subjects Air quality
Air quality measurements
Chemical transport
Computer applications
Inference
IoT
Machine learning
Mobile
Monitoring
Nitrogen dioxide
Particulate matter
Performance measurement
Performance prediction
Sensors
Urban
title Spatiotemporal air quality inference of low-cost sensor data: Evidence from multiple sensor testbeds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20air%20quality%20inference%20of%20low-cost%20sensor%20data:%20Evidence%20from%20multiple%20sensor%20testbeds&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Hofman,%20Jelle&rft.date=2022-03&rft.volume=149&rft.spage=105306&rft.pages=105306-&rft.artnum=105306&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2022.105306&rft_dat=%3Cproquest_cross%3E2639034317%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-3a6b42879e1c723e1c78e7653cb8928f9b3a0e4b8466725fcfc9e262c22f91a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2639034317&rft_id=info:pmid/&rfr_iscdi=true