Loading…

Attention mechanism-based generative adversarial networks for cloud removal in Landsat images

The existence of clouds affects the quality of optical remote sensing images. Cloud removal is an important preprocessing procedure to effectively improve the utilization of optical remote sensing images. Thin clouds partly obscure the land surfaces beneath them, making it possible to correct the cl...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment 2022-03, Vol.271, p.112902, Article 112902
Main Authors: Xu, Meng, Deng, Furong, Jia, Sen, Jia, Xiuping, Plaza, Antonio J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-fce04ba29dae3e93a86f726726e5772da9a41559eba9f1c081fb84e6c6fd45813
cites cdi_FETCH-LOGICAL-c325t-fce04ba29dae3e93a86f726726e5772da9a41559eba9f1c081fb84e6c6fd45813
container_end_page
container_issue
container_start_page 112902
container_title Remote sensing of environment
container_volume 271
creator Xu, Meng
Deng, Furong
Jia, Sen
Jia, Xiuping
Plaza, Antonio J.
description The existence of clouds affects the quality of optical remote sensing images. Cloud removal is an important preprocessing procedure to effectively improve the utilization of optical remote sensing images. Thin clouds partly obscure the land surfaces beneath them, making it possible to correct the cloudy scenes according to the available information. In this research, we introduce the attention mechanism-based generative adversarial networks for cloud removal (AMGAN-CR) method for Landsat images. First, attention maps of the input cloudy images are generated to extract the cloud distributions and features through an attentive recurrent network. Second, clouds are removed by an attentive residual network under the guidance of the attention maps. Finally, the generated feature maps are fed to a reconstruction network to restore the final cloud-free images. The networks are trained by cloudy and cloud-free Landsat image pairs, and the cloudy images are tested to validate the effectiveness of AMGAN-CR. Both simulated and real cloud experimental results show that the proposed method is more outstanding than the other five state-of-the-art traditional and deep learning methods in removing cloud. •Generative adversarial networks (GANs) is applied for cloud removal.•We use attention mechanism to capture the distribution of cloud thickness.•Cloud detection is not required in AMGAN-CR.•Take advantage of multispectral information to remove clouds.•The new method performs better than the other five state-of-the-art methods.
doi_str_mv 10.1016/j.rse.2022.112902
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639038771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425722000165</els_id><sourcerecordid>2639038771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-fce04ba29dae3e93a86f726726e5772da9a41559eba9f1c081fb84e6c6fd45813</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHcB161J-kiLq2HwBQNudCkhTW7G1GkyJpmK_94OdS1cOIt7zr2HD6FrSnJKaH3b5yFCzghjOaWsJewELWjD24xwUp6iBSFFmZWs4ufoIsaeEFo1nC7Q-yolcMl6hwdQH9LZOGSdjKDxFhwEmewIWOoRQpTByh12kL59-IzY-IDVzh80DjD4cVpZhzfS6SgTtoPcQrxEZ0buIlz96RK9Pdy_rp-yzcvj83q1yVTBqpQZBaTsJGu1hALaQja14ayeBirOmZatLGlVtdDJ1lBFGmq6poRa1UaXVUOLJbqZ7-6D_zpATKL3h-Cml4LVRUuKhvOji84uFXyMAYzYh6ln-BGUiCNF0YuJojhSFDPFKXM3Z2CqP1oIIioLToG2AVQS2tt_0r-bSHui</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639038771</pqid></control><display><type>article</type><title>Attention mechanism-based generative adversarial networks for cloud removal in Landsat images</title><source>ScienceDirect Freedom Collection</source><creator>Xu, Meng ; Deng, Furong ; Jia, Sen ; Jia, Xiuping ; Plaza, Antonio J.</creator><creatorcontrib>Xu, Meng ; Deng, Furong ; Jia, Sen ; Jia, Xiuping ; Plaza, Antonio J.</creatorcontrib><description>The existence of clouds affects the quality of optical remote sensing images. Cloud removal is an important preprocessing procedure to effectively improve the utilization of optical remote sensing images. Thin clouds partly obscure the land surfaces beneath them, making it possible to correct the cloudy scenes according to the available information. In this research, we introduce the attention mechanism-based generative adversarial networks for cloud removal (AMGAN-CR) method for Landsat images. First, attention maps of the input cloudy images are generated to extract the cloud distributions and features through an attentive recurrent network. Second, clouds are removed by an attentive residual network under the guidance of the attention maps. Finally, the generated feature maps are fed to a reconstruction network to restore the final cloud-free images. The networks are trained by cloudy and cloud-free Landsat image pairs, and the cloudy images are tested to validate the effectiveness of AMGAN-CR. Both simulated and real cloud experimental results show that the proposed method is more outstanding than the other five state-of-the-art traditional and deep learning methods in removing cloud. •Generative adversarial networks (GANs) is applied for cloud removal.•We use attention mechanism to capture the distribution of cloud thickness.•Cloud detection is not required in AMGAN-CR.•Take advantage of multispectral information to remove clouds.•The new method performs better than the other five state-of-the-art methods.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2022.112902</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Attention mechanism ; Cloud removal ; Clouds ; Deep learning ; Feature extraction ; Feature maps ; Generative adversarial networks ; Generative adversarial networks (GANs) ; Image quality ; Image restoration ; Landsat ; Landsat images ; Remote sensing ; Satellite imagery</subject><ispartof>Remote sensing of environment, 2022-03, Vol.271, p.112902, Article 112902</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright Elsevier BV Mar 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-fce04ba29dae3e93a86f726726e5772da9a41559eba9f1c081fb84e6c6fd45813</citedby><cites>FETCH-LOGICAL-c325t-fce04ba29dae3e93a86f726726e5772da9a41559eba9f1c081fb84e6c6fd45813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Xu, Meng</creatorcontrib><creatorcontrib>Deng, Furong</creatorcontrib><creatorcontrib>Jia, Sen</creatorcontrib><creatorcontrib>Jia, Xiuping</creatorcontrib><creatorcontrib>Plaza, Antonio J.</creatorcontrib><title>Attention mechanism-based generative adversarial networks for cloud removal in Landsat images</title><title>Remote sensing of environment</title><description>The existence of clouds affects the quality of optical remote sensing images. Cloud removal is an important preprocessing procedure to effectively improve the utilization of optical remote sensing images. Thin clouds partly obscure the land surfaces beneath them, making it possible to correct the cloudy scenes according to the available information. In this research, we introduce the attention mechanism-based generative adversarial networks for cloud removal (AMGAN-CR) method for Landsat images. First, attention maps of the input cloudy images are generated to extract the cloud distributions and features through an attentive recurrent network. Second, clouds are removed by an attentive residual network under the guidance of the attention maps. Finally, the generated feature maps are fed to a reconstruction network to restore the final cloud-free images. The networks are trained by cloudy and cloud-free Landsat image pairs, and the cloudy images are tested to validate the effectiveness of AMGAN-CR. Both simulated and real cloud experimental results show that the proposed method is more outstanding than the other five state-of-the-art traditional and deep learning methods in removing cloud. •Generative adversarial networks (GANs) is applied for cloud removal.•We use attention mechanism to capture the distribution of cloud thickness.•Cloud detection is not required in AMGAN-CR.•Take advantage of multispectral information to remove clouds.•The new method performs better than the other five state-of-the-art methods.</description><subject>Attention mechanism</subject><subject>Cloud removal</subject><subject>Clouds</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Generative adversarial networks</subject><subject>Generative adversarial networks (GANs)</subject><subject>Image quality</subject><subject>Image restoration</subject><subject>Landsat</subject><subject>Landsat images</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHcB161J-kiLq2HwBQNudCkhTW7G1GkyJpmK_94OdS1cOIt7zr2HD6FrSnJKaH3b5yFCzghjOaWsJewELWjD24xwUp6iBSFFmZWs4ufoIsaeEFo1nC7Q-yolcMl6hwdQH9LZOGSdjKDxFhwEmewIWOoRQpTByh12kL59-IzY-IDVzh80DjD4cVpZhzfS6SgTtoPcQrxEZ0buIlz96RK9Pdy_rp-yzcvj83q1yVTBqpQZBaTsJGu1hALaQja14ayeBirOmZatLGlVtdDJ1lBFGmq6poRa1UaXVUOLJbqZ7-6D_zpATKL3h-Cml4LVRUuKhvOji84uFXyMAYzYh6ln-BGUiCNF0YuJojhSFDPFKXM3Z2CqP1oIIioLToG2AVQS2tt_0r-bSHui</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Xu, Meng</creator><creator>Deng, Furong</creator><creator>Jia, Sen</creator><creator>Jia, Xiuping</creator><creator>Plaza, Antonio J.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20220315</creationdate><title>Attention mechanism-based generative adversarial networks for cloud removal in Landsat images</title><author>Xu, Meng ; Deng, Furong ; Jia, Sen ; Jia, Xiuping ; Plaza, Antonio J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-fce04ba29dae3e93a86f726726e5772da9a41559eba9f1c081fb84e6c6fd45813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attention mechanism</topic><topic>Cloud removal</topic><topic>Clouds</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Generative adversarial networks</topic><topic>Generative adversarial networks (GANs)</topic><topic>Image quality</topic><topic>Image restoration</topic><topic>Landsat</topic><topic>Landsat images</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Meng</creatorcontrib><creatorcontrib>Deng, Furong</creatorcontrib><creatorcontrib>Jia, Sen</creatorcontrib><creatorcontrib>Jia, Xiuping</creatorcontrib><creatorcontrib>Plaza, Antonio J.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Meng</au><au>Deng, Furong</au><au>Jia, Sen</au><au>Jia, Xiuping</au><au>Plaza, Antonio J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attention mechanism-based generative adversarial networks for cloud removal in Landsat images</atitle><jtitle>Remote sensing of environment</jtitle><date>2022-03-15</date><risdate>2022</risdate><volume>271</volume><spage>112902</spage><pages>112902-</pages><artnum>112902</artnum><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>The existence of clouds affects the quality of optical remote sensing images. Cloud removal is an important preprocessing procedure to effectively improve the utilization of optical remote sensing images. Thin clouds partly obscure the land surfaces beneath them, making it possible to correct the cloudy scenes according to the available information. In this research, we introduce the attention mechanism-based generative adversarial networks for cloud removal (AMGAN-CR) method for Landsat images. First, attention maps of the input cloudy images are generated to extract the cloud distributions and features through an attentive recurrent network. Second, clouds are removed by an attentive residual network under the guidance of the attention maps. Finally, the generated feature maps are fed to a reconstruction network to restore the final cloud-free images. The networks are trained by cloudy and cloud-free Landsat image pairs, and the cloudy images are tested to validate the effectiveness of AMGAN-CR. Both simulated and real cloud experimental results show that the proposed method is more outstanding than the other five state-of-the-art traditional and deep learning methods in removing cloud. •Generative adversarial networks (GANs) is applied for cloud removal.•We use attention mechanism to capture the distribution of cloud thickness.•Cloud detection is not required in AMGAN-CR.•Take advantage of multispectral information to remove clouds.•The new method performs better than the other five state-of-the-art methods.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2022.112902</doi></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2022-03, Vol.271, p.112902, Article 112902
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_journals_2639038771
source ScienceDirect Freedom Collection
subjects Attention mechanism
Cloud removal
Clouds
Deep learning
Feature extraction
Feature maps
Generative adversarial networks
Generative adversarial networks (GANs)
Image quality
Image restoration
Landsat
Landsat images
Remote sensing
Satellite imagery
title Attention mechanism-based generative adversarial networks for cloud removal in Landsat images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attention%20mechanism-based%20generative%20adversarial%20networks%20for%20cloud%20removal%20in%20Landsat%20images&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Xu,%20Meng&rft.date=2022-03-15&rft.volume=271&rft.spage=112902&rft.pages=112902-&rft.artnum=112902&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2022.112902&rft_dat=%3Cproquest_cross%3E2639038771%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-fce04ba29dae3e93a86f726726e5772da9a41559eba9f1c081fb84e6c6fd45813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2639038771&rft_id=info:pmid/&rfr_iscdi=true