Loading…
Inclusion complex of emodin and glycyrrhetinic acid-conjugated-β-cyclodextrin to target liver cells: synthesis, characterization, and bioactivity in vitro and in vivo
The objective of this study is to prepare a novel delivery vector, glycyrrhetinic acid -conjugated-β-cyclodextrin (GA-CD) for liver targeting, and investigate the effects of the emodin-GA-CD inclusion complex (E-GA-CD complex) on liver cancer therapy. GA-CD was synthesized from GA and CD, and was us...
Saved in:
Published in: | Journal of inclusion phenomena and macrocyclic chemistry 2022-04, Vol.102 (3-4), p.339-346 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objective of this study is to prepare a novel delivery vector, glycyrrhetinic acid -conjugated-β-cyclodextrin (GA-CD) for liver targeting, and investigate the effects of the emodin-GA-CD inclusion complex (E-GA-CD complex) on liver cancer therapy. GA-CD was synthesized from GA and CD, and was used to encapsulate emodin to form an E-GA-CD complex. Proton nuclear magnetic resonance spectroscopy, two-dimensional rotating-frame Overhauser effect spectroscopy, and differential scanning calorimetry were used to characterize GA-CD and the E-GA-CD complex. Liver cell targeting bioactivity of the E-GA-CD complex was investigated by cellular uptake, cell viability, and biodistribution. In vitro results revealed that the E-GA-CD complex exhibited increased cellular uptake and cytotoxicity against Hep3B cells compared to free emodin. In vivo biodistribution results indicated that mice treated with the E-GA-CD complex exhibited greater emodin uptake in liver tissue than emodin-treated mice, suggesting that the E-GA-CD complex was effective in targeting liver cells. |
---|---|
ISSN: | 1388-3127 1573-1111 |
DOI: | 10.1007/s10847-021-01123-0 |