Loading…

Anomaly detection in streaming data with gaussian process based stochastic differential equations

•Streaming data are characterised as evolution of Stochastic Differential Equations.•Gaussian process regression used for nonparametric estimation of SDE coefficients.•Stochastic process theory applied to automatically compare SDE models.•Bootstrapping methods allow for control of the false alarm ra...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition letters 2022-01, Vol.153, p.254-260
Main Authors: Glyn-Davies, Alex, Girolami, Mark
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-a4b5269e1d6b2531003cb86792d32f21eedb93bd5d8bea5bdd7cc4ad4196e3e43
cites cdi_FETCH-LOGICAL-c334t-a4b5269e1d6b2531003cb86792d32f21eedb93bd5d8bea5bdd7cc4ad4196e3e43
container_end_page 260
container_issue
container_start_page 254
container_title Pattern recognition letters
container_volume 153
creator Glyn-Davies, Alex
Girolami, Mark
description •Streaming data are characterised as evolution of Stochastic Differential Equations.•Gaussian process regression used for nonparametric estimation of SDE coefficients.•Stochastic process theory applied to automatically compare SDE models.•Bootstrapping methods allow for control of the false alarm rate of detector.•Evaluation on datasets demonstrates detector’s high discriminative power. This paper characterises streaming data as the evolution of a stochastic differential equation, with the aim of extracting information that can be used to detect anomalies in the stream. Gaussian process regression provides a flexible approach to approximating components of the stochastic differential equation, allowing for complex modelling of underlying data generation dynamics. The proposed algorithm displays superior discriminative power over different time-series anomaly detection methods for both synthetic and NYC taxi datasets, whilst the introduced bootstrapping method for setting the detection threshold provides control over the false alarm rate of the anomaly detector.
doi_str_mv 10.1016/j.patrec.2021.12.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639712094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865521004487</els_id><sourcerecordid>2639712094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a4b5269e1d6b2531003cb86792d32f21eedb93bd5d8bea5bdd7cc4ad4196e3e43</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywssU7wI88NUlXxkiqxgbU1sSetozZpbQfUv8dRWLOazblnZi4h95ylnPHisUuPEBzqVDDBUy5SxssLsuBVKZJSZtklWUSsTKoiz6_JjfcdY6yQdbUgsOqHA-zP1GBAHezQU9tTH21wsP2WGghAf2zY0S2M3lvo6dENGr2nDXg0ER30DnywmhrbtuiwDxb2FE8jTDp_S65a2Hu8-5tL8vXy_Ll-SzYfr-_r1SbRUmYhgazJRVEjN0UjcskZk7qpirIWRopWcETT1LIxuakahLwxptQ6A5PxukCJmVySh9kb7zuN6IPqhtH1caUS8deSC1ZPVDZT2g3eO2zV0dkDuLPiTE1lqk7NZaqpTMWFimXG2NMcw_jBt0WnvLbYazQ2okGZwf4v-AVYvoGv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639712094</pqid></control><display><type>article</type><title>Anomaly detection in streaming data with gaussian process based stochastic differential equations</title><source>ScienceDirect Freedom Collection</source><creator>Glyn-Davies, Alex ; Girolami, Mark</creator><creatorcontrib>Glyn-Davies, Alex ; Girolami, Mark</creatorcontrib><description>•Streaming data are characterised as evolution of Stochastic Differential Equations.•Gaussian process regression used for nonparametric estimation of SDE coefficients.•Stochastic process theory applied to automatically compare SDE models.•Bootstrapping methods allow for control of the false alarm rate of detector.•Evaluation on datasets demonstrates detector’s high discriminative power. This paper characterises streaming data as the evolution of a stochastic differential equation, with the aim of extracting information that can be used to detect anomalies in the stream. Gaussian process regression provides a flexible approach to approximating components of the stochastic differential equation, allowing for complex modelling of underlying data generation dynamics. The proposed algorithm displays superior discriminative power over different time-series anomaly detection methods for both synthetic and NYC taxi datasets, whilst the introduced bootstrapping method for setting the detection threshold provides control over the false alarm rate of the anomaly detector.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2021.12.017</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Anomalies ; Anomaly detection ; Bootstrapping ; Differential equations ; False alarms ; Gaussian process ; Stochastic differential equations ; Streaming data</subject><ispartof>Pattern recognition letters, 2022-01, Vol.153, p.254-260</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a4b5269e1d6b2531003cb86792d32f21eedb93bd5d8bea5bdd7cc4ad4196e3e43</citedby><cites>FETCH-LOGICAL-c334t-a4b5269e1d6b2531003cb86792d32f21eedb93bd5d8bea5bdd7cc4ad4196e3e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Glyn-Davies, Alex</creatorcontrib><creatorcontrib>Girolami, Mark</creatorcontrib><title>Anomaly detection in streaming data with gaussian process based stochastic differential equations</title><title>Pattern recognition letters</title><description>•Streaming data are characterised as evolution of Stochastic Differential Equations.•Gaussian process regression used for nonparametric estimation of SDE coefficients.•Stochastic process theory applied to automatically compare SDE models.•Bootstrapping methods allow for control of the false alarm rate of detector.•Evaluation on datasets demonstrates detector’s high discriminative power. This paper characterises streaming data as the evolution of a stochastic differential equation, with the aim of extracting information that can be used to detect anomalies in the stream. Gaussian process regression provides a flexible approach to approximating components of the stochastic differential equation, allowing for complex modelling of underlying data generation dynamics. The proposed algorithm displays superior discriminative power over different time-series anomaly detection methods for both synthetic and NYC taxi datasets, whilst the introduced bootstrapping method for setting the detection threshold provides control over the false alarm rate of the anomaly detector.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Bootstrapping</subject><subject>Differential equations</subject><subject>False alarms</subject><subject>Gaussian process</subject><subject>Stochastic differential equations</subject><subject>Streaming data</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywssU7wI88NUlXxkiqxgbU1sSetozZpbQfUv8dRWLOazblnZi4h95ylnPHisUuPEBzqVDDBUy5SxssLsuBVKZJSZtklWUSsTKoiz6_JjfcdY6yQdbUgsOqHA-zP1GBAHezQU9tTH21wsP2WGghAf2zY0S2M3lvo6dENGr2nDXg0ER30DnywmhrbtuiwDxb2FE8jTDp_S65a2Hu8-5tL8vXy_Ll-SzYfr-_r1SbRUmYhgazJRVEjN0UjcskZk7qpirIWRopWcETT1LIxuakahLwxptQ6A5PxukCJmVySh9kb7zuN6IPqhtH1caUS8deSC1ZPVDZT2g3eO2zV0dkDuLPiTE1lqk7NZaqpTMWFimXG2NMcw_jBt0WnvLbYazQ2okGZwf4v-AVYvoGv</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Glyn-Davies, Alex</creator><creator>Girolami, Mark</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202201</creationdate><title>Anomaly detection in streaming data with gaussian process based stochastic differential equations</title><author>Glyn-Davies, Alex ; Girolami, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a4b5269e1d6b2531003cb86792d32f21eedb93bd5d8bea5bdd7cc4ad4196e3e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Bootstrapping</topic><topic>Differential equations</topic><topic>False alarms</topic><topic>Gaussian process</topic><topic>Stochastic differential equations</topic><topic>Streaming data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glyn-Davies, Alex</creatorcontrib><creatorcontrib>Girolami, Mark</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glyn-Davies, Alex</au><au>Girolami, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomaly detection in streaming data with gaussian process based stochastic differential equations</atitle><jtitle>Pattern recognition letters</jtitle><date>2022-01</date><risdate>2022</risdate><volume>153</volume><spage>254</spage><epage>260</epage><pages>254-260</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•Streaming data are characterised as evolution of Stochastic Differential Equations.•Gaussian process regression used for nonparametric estimation of SDE coefficients.•Stochastic process theory applied to automatically compare SDE models.•Bootstrapping methods allow for control of the false alarm rate of detector.•Evaluation on datasets demonstrates detector’s high discriminative power. This paper characterises streaming data as the evolution of a stochastic differential equation, with the aim of extracting information that can be used to detect anomalies in the stream. Gaussian process regression provides a flexible approach to approximating components of the stochastic differential equation, allowing for complex modelling of underlying data generation dynamics. The proposed algorithm displays superior discriminative power over different time-series anomaly detection methods for both synthetic and NYC taxi datasets, whilst the introduced bootstrapping method for setting the detection threshold provides control over the false alarm rate of the anomaly detector.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2021.12.017</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 2022-01, Vol.153, p.254-260
issn 0167-8655
1872-7344
language eng
recordid cdi_proquest_journals_2639712094
source ScienceDirect Freedom Collection
subjects Algorithms
Anomalies
Anomaly detection
Bootstrapping
Differential equations
False alarms
Gaussian process
Stochastic differential equations
Streaming data
title Anomaly detection in streaming data with gaussian process based stochastic differential equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomaly%20detection%20in%20streaming%20data%20with%20gaussian%20process%20based%20stochastic%20differential%20equations&rft.jtitle=Pattern%20recognition%20letters&rft.au=Glyn-Davies,%20Alex&rft.date=2022-01&rft.volume=153&rft.spage=254&rft.epage=260&rft.pages=254-260&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2021.12.017&rft_dat=%3Cproquest_cross%3E2639712094%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-a4b5269e1d6b2531003cb86792d32f21eedb93bd5d8bea5bdd7cc4ad4196e3e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2639712094&rft_id=info:pmid/&rfr_iscdi=true