Loading…
Anomaly detection in streaming data with gaussian process based stochastic differential equations
•Streaming data are characterised as evolution of Stochastic Differential Equations.•Gaussian process regression used for nonparametric estimation of SDE coefficients.•Stochastic process theory applied to automatically compare SDE models.•Bootstrapping methods allow for control of the false alarm ra...
Saved in:
Published in: | Pattern recognition letters 2022-01, Vol.153, p.254-260 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-a4b5269e1d6b2531003cb86792d32f21eedb93bd5d8bea5bdd7cc4ad4196e3e43 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-a4b5269e1d6b2531003cb86792d32f21eedb93bd5d8bea5bdd7cc4ad4196e3e43 |
container_end_page | 260 |
container_issue | |
container_start_page | 254 |
container_title | Pattern recognition letters |
container_volume | 153 |
creator | Glyn-Davies, Alex Girolami, Mark |
description | •Streaming data are characterised as evolution of Stochastic Differential Equations.•Gaussian process regression used for nonparametric estimation of SDE coefficients.•Stochastic process theory applied to automatically compare SDE models.•Bootstrapping methods allow for control of the false alarm rate of detector.•Evaluation on datasets demonstrates detector’s high discriminative power.
This paper characterises streaming data as the evolution of a stochastic differential equation, with the aim of extracting information that can be used to detect anomalies in the stream. Gaussian process regression provides a flexible approach to approximating components of the stochastic differential equation, allowing for complex modelling of underlying data generation dynamics. The proposed algorithm displays superior discriminative power over different time-series anomaly detection methods for both synthetic and NYC taxi datasets, whilst the introduced bootstrapping method for setting the detection threshold provides control over the false alarm rate of the anomaly detector. |
doi_str_mv | 10.1016/j.patrec.2021.12.017 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639712094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865521004487</els_id><sourcerecordid>2639712094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a4b5269e1d6b2531003cb86792d32f21eedb93bd5d8bea5bdd7cc4ad4196e3e43</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywssU7wI88NUlXxkiqxgbU1sSetozZpbQfUv8dRWLOazblnZi4h95ylnPHisUuPEBzqVDDBUy5SxssLsuBVKZJSZtklWUSsTKoiz6_JjfcdY6yQdbUgsOqHA-zP1GBAHezQU9tTH21wsP2WGghAf2zY0S2M3lvo6dENGr2nDXg0ER30DnywmhrbtuiwDxb2FE8jTDp_S65a2Hu8-5tL8vXy_Ll-SzYfr-_r1SbRUmYhgazJRVEjN0UjcskZk7qpirIWRopWcETT1LIxuakahLwxptQ6A5PxukCJmVySh9kb7zuN6IPqhtH1caUS8deSC1ZPVDZT2g3eO2zV0dkDuLPiTE1lqk7NZaqpTMWFimXG2NMcw_jBt0WnvLbYazQ2okGZwf4v-AVYvoGv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639712094</pqid></control><display><type>article</type><title>Anomaly detection in streaming data with gaussian process based stochastic differential equations</title><source>ScienceDirect Freedom Collection</source><creator>Glyn-Davies, Alex ; Girolami, Mark</creator><creatorcontrib>Glyn-Davies, Alex ; Girolami, Mark</creatorcontrib><description>•Streaming data are characterised as evolution of Stochastic Differential Equations.•Gaussian process regression used for nonparametric estimation of SDE coefficients.•Stochastic process theory applied to automatically compare SDE models.•Bootstrapping methods allow for control of the false alarm rate of detector.•Evaluation on datasets demonstrates detector’s high discriminative power.
This paper characterises streaming data as the evolution of a stochastic differential equation, with the aim of extracting information that can be used to detect anomalies in the stream. Gaussian process regression provides a flexible approach to approximating components of the stochastic differential equation, allowing for complex modelling of underlying data generation dynamics. The proposed algorithm displays superior discriminative power over different time-series anomaly detection methods for both synthetic and NYC taxi datasets, whilst the introduced bootstrapping method for setting the detection threshold provides control over the false alarm rate of the anomaly detector.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2021.12.017</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Anomalies ; Anomaly detection ; Bootstrapping ; Differential equations ; False alarms ; Gaussian process ; Stochastic differential equations ; Streaming data</subject><ispartof>Pattern recognition letters, 2022-01, Vol.153, p.254-260</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a4b5269e1d6b2531003cb86792d32f21eedb93bd5d8bea5bdd7cc4ad4196e3e43</citedby><cites>FETCH-LOGICAL-c334t-a4b5269e1d6b2531003cb86792d32f21eedb93bd5d8bea5bdd7cc4ad4196e3e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Glyn-Davies, Alex</creatorcontrib><creatorcontrib>Girolami, Mark</creatorcontrib><title>Anomaly detection in streaming data with gaussian process based stochastic differential equations</title><title>Pattern recognition letters</title><description>•Streaming data are characterised as evolution of Stochastic Differential Equations.•Gaussian process regression used for nonparametric estimation of SDE coefficients.•Stochastic process theory applied to automatically compare SDE models.•Bootstrapping methods allow for control of the false alarm rate of detector.•Evaluation on datasets demonstrates detector’s high discriminative power.
This paper characterises streaming data as the evolution of a stochastic differential equation, with the aim of extracting information that can be used to detect anomalies in the stream. Gaussian process regression provides a flexible approach to approximating components of the stochastic differential equation, allowing for complex modelling of underlying data generation dynamics. The proposed algorithm displays superior discriminative power over different time-series anomaly detection methods for both synthetic and NYC taxi datasets, whilst the introduced bootstrapping method for setting the detection threshold provides control over the false alarm rate of the anomaly detector.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Bootstrapping</subject><subject>Differential equations</subject><subject>False alarms</subject><subject>Gaussian process</subject><subject>Stochastic differential equations</subject><subject>Streaming data</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywssU7wI88NUlXxkiqxgbU1sSetozZpbQfUv8dRWLOazblnZi4h95ylnPHisUuPEBzqVDDBUy5SxssLsuBVKZJSZtklWUSsTKoiz6_JjfcdY6yQdbUgsOqHA-zP1GBAHezQU9tTH21wsP2WGghAf2zY0S2M3lvo6dENGr2nDXg0ER30DnywmhrbtuiwDxb2FE8jTDp_S65a2Hu8-5tL8vXy_Ll-SzYfr-_r1SbRUmYhgazJRVEjN0UjcskZk7qpirIWRopWcETT1LIxuakahLwxptQ6A5PxukCJmVySh9kb7zuN6IPqhtH1caUS8deSC1ZPVDZT2g3eO2zV0dkDuLPiTE1lqk7NZaqpTMWFimXG2NMcw_jBt0WnvLbYazQ2okGZwf4v-AVYvoGv</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Glyn-Davies, Alex</creator><creator>Girolami, Mark</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202201</creationdate><title>Anomaly detection in streaming data with gaussian process based stochastic differential equations</title><author>Glyn-Davies, Alex ; Girolami, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a4b5269e1d6b2531003cb86792d32f21eedb93bd5d8bea5bdd7cc4ad4196e3e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Bootstrapping</topic><topic>Differential equations</topic><topic>False alarms</topic><topic>Gaussian process</topic><topic>Stochastic differential equations</topic><topic>Streaming data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glyn-Davies, Alex</creatorcontrib><creatorcontrib>Girolami, Mark</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glyn-Davies, Alex</au><au>Girolami, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomaly detection in streaming data with gaussian process based stochastic differential equations</atitle><jtitle>Pattern recognition letters</jtitle><date>2022-01</date><risdate>2022</risdate><volume>153</volume><spage>254</spage><epage>260</epage><pages>254-260</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•Streaming data are characterised as evolution of Stochastic Differential Equations.•Gaussian process regression used for nonparametric estimation of SDE coefficients.•Stochastic process theory applied to automatically compare SDE models.•Bootstrapping methods allow for control of the false alarm rate of detector.•Evaluation on datasets demonstrates detector’s high discriminative power.
This paper characterises streaming data as the evolution of a stochastic differential equation, with the aim of extracting information that can be used to detect anomalies in the stream. Gaussian process regression provides a flexible approach to approximating components of the stochastic differential equation, allowing for complex modelling of underlying data generation dynamics. The proposed algorithm displays superior discriminative power over different time-series anomaly detection methods for both synthetic and NYC taxi datasets, whilst the introduced bootstrapping method for setting the detection threshold provides control over the false alarm rate of the anomaly detector.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2021.12.017</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8655 |
ispartof | Pattern recognition letters, 2022-01, Vol.153, p.254-260 |
issn | 0167-8655 1872-7344 |
language | eng |
recordid | cdi_proquest_journals_2639712094 |
source | ScienceDirect Freedom Collection |
subjects | Algorithms Anomalies Anomaly detection Bootstrapping Differential equations False alarms Gaussian process Stochastic differential equations Streaming data |
title | Anomaly detection in streaming data with gaussian process based stochastic differential equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomaly%20detection%20in%20streaming%20data%20with%20gaussian%20process%20based%20stochastic%20differential%20equations&rft.jtitle=Pattern%20recognition%20letters&rft.au=Glyn-Davies,%20Alex&rft.date=2022-01&rft.volume=153&rft.spage=254&rft.epage=260&rft.pages=254-260&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2021.12.017&rft_dat=%3Cproquest_cross%3E2639712094%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-a4b5269e1d6b2531003cb86792d32f21eedb93bd5d8bea5bdd7cc4ad4196e3e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2639712094&rft_id=info:pmid/&rfr_iscdi=true |