Loading…
Denoising and feature extraction in photoemission spectra with variational auto-encoder neural networks
In recent years, distinct machine learning (ML) models have been separately used for feature extraction and noise reduction from energy-momentum dispersion intensity maps obtained from raw angle-resolved photoemission spectroscopy (ARPES) data. In this work, we employ a shallow variational auto-enco...
Saved in:
Published in: | arXiv.org 2022-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent years, distinct machine learning (ML) models have been separately used for feature extraction and noise reduction from energy-momentum dispersion intensity maps obtained from raw angle-resolved photoemission spectroscopy (ARPES) data. In this work, we employ a shallow variational auto-encoder (VAE) neural network to demonstrate the prospect of using ML for both denoising of as well as feature extraction from ARPES dispersion maps. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2203.07537 |