Loading…
Protection of edge transport in quantum spin Hall samples: spin-symmetry based general approach and examples
Understanding possible mechanisms, which can lead to suppression of helical edge transport in quantum spin Hall (QSH) systems, attracted huge attention right after the first experiments revealing the fragility of the ballistic conductance. Despite the very intensive research and the abundance of the...
Saved in:
Published in: | New journal of physics 2022-02, Vol.24 (2), p.23040 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-ec92574aa88d9d862d5e962d273dabee3a15303212d35f35ca91217f6425b39c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-ec92574aa88d9d862d5e962d273dabee3a15303212d35f35ca91217f6425b39c3 |
container_end_page | |
container_issue | 2 |
container_start_page | 23040 |
container_title | New journal of physics |
container_volume | 24 |
creator | Yevtushenko, Oleg M Yudson, Vladimir I |
description | Understanding possible mechanisms, which can lead to suppression of helical edge transport in quantum spin Hall (QSH) systems, attracted huge attention right after the first experiments revealing the fragility of the ballistic conductance. Despite the very intensive research and the abundance of theoretical models, the fully consistent explanation of the experimental results is still lacking. We systematize various theories of helical transport with the help of the spin conservation analysis which allows one to single out setups with the ballistic conductance being robustly protected regardless of the electron backscattering. First, we briefly review different theories of edge transport in the QSH samples with and without the spin axial symmetry of the electrons including those theoretical predictions which are not consistent with the spin conservation analysis and, thus, call for a deeper study. Next, we illustrate the general approach by a detailed study of representative examples. One of them addresses the helical edge coupled to an array of Heisenberg-interacting magnetic impurities (MIs) and demonstrates that the conductance remains ballistic even if the time-reversal symmetry on the edge is (locally) broken but the total spin is conserved. Another example focuses on the effects of the space-fluctuating spin–orbit interaction on the QSH edge. It reveals weakness of the protection in several cases, including, e.g. the presence of either the U(1)-symmetric, though not fully isotropic, MIs or generic electron–electron interactions. |
doi_str_mv | 10.1088/1367-2630/ac50e9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640007871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_14037a26cf954f6d930fd5280df6d1ae</doaj_id><sourcerecordid>2640007871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-ec92574aa88d9d862d5e962d273dabee3a15303212d35f35ca91217f6425b39c3</originalsourceid><addsrcrecordid>eNp1kc1v1DAUxCNEJUrLnaMlDlwI9WficENVoZUqwaE9W2_t5yWrJHZtr8T-93gbVHooF9tvNPOzrWma94x-ZlTrCya6vuWdoBdgFcXhVXP6JL1-dn7TvM15RyljmvPTZvqZQkFbxrCQ4Am6LZKSYMkxpELGhTzsYSn7meRYh2uYJpJhjhPmL49Smw_zjCUdyAYyOrLFBRNMBGJMAewvAosj-HuNnDcnHqaM7_7uZ839t6u7y-v29sf3m8uvt62VUpcW7cBVLwG0doPTHXcKh7ryXjjYIApgSlDBGXdCeaEsDIyz3neSq40YrDhrblauC7AzMY0zpIMJMJpHIaStgVRGO6FhkooeeGf9oKTv3CCod4pr6urAACvrw8qq_3nYYy5mF_Zpqc83vJOU0l73rLro6rIp5JzQP93KqDn2Y44FmGMBZu2nRj6ukTHEf8xlFw2XhhvKBZXUROer89MLzv-C_wBFQZ6w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640007871</pqid></control><display><type>article</type><title>Protection of edge transport in quantum spin Hall samples: spin-symmetry based general approach and examples</title><source>Publicly Available Content (ProQuest)</source><creator>Yevtushenko, Oleg M ; Yudson, Vladimir I</creator><creatorcontrib>Yevtushenko, Oleg M ; Yudson, Vladimir I</creatorcontrib><description>Understanding possible mechanisms, which can lead to suppression of helical edge transport in quantum spin Hall (QSH) systems, attracted huge attention right after the first experiments revealing the fragility of the ballistic conductance. Despite the very intensive research and the abundance of theoretical models, the fully consistent explanation of the experimental results is still lacking. We systematize various theories of helical transport with the help of the spin conservation analysis which allows one to single out setups with the ballistic conductance being robustly protected regardless of the electron backscattering. First, we briefly review different theories of edge transport in the QSH samples with and without the spin axial symmetry of the electrons including those theoretical predictions which are not consistent with the spin conservation analysis and, thus, call for a deeper study. Next, we illustrate the general approach by a detailed study of representative examples. One of them addresses the helical edge coupled to an array of Heisenberg-interacting magnetic impurities (MIs) and demonstrates that the conductance remains ballistic even if the time-reversal symmetry on the edge is (locally) broken but the total spin is conserved. Another example focuses on the effects of the space-fluctuating spin–orbit interaction on the QSH edge. It reveals weakness of the protection in several cases, including, e.g. the presence of either the U(1)-symmetric, though not fully isotropic, MIs or generic electron–electron interactions.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ac50e9</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Conservation ; Electron back scatter ; Electron spin ; Fragility ; Physics ; protected helical transport ; quantum spin Hall samples ; Spin-orbit interactions ; Symmetry ; topological insulators</subject><ispartof>New journal of physics, 2022-02, Vol.24 (2), p.23040</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-ec92574aa88d9d862d5e962d273dabee3a15303212d35f35ca91217f6425b39c3</citedby><cites>FETCH-LOGICAL-c448t-ec92574aa88d9d862d5e962d273dabee3a15303212d35f35ca91217f6425b39c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2640007871?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Yevtushenko, Oleg M</creatorcontrib><creatorcontrib>Yudson, Vladimir I</creatorcontrib><title>Protection of edge transport in quantum spin Hall samples: spin-symmetry based general approach and examples</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Understanding possible mechanisms, which can lead to suppression of helical edge transport in quantum spin Hall (QSH) systems, attracted huge attention right after the first experiments revealing the fragility of the ballistic conductance. Despite the very intensive research and the abundance of theoretical models, the fully consistent explanation of the experimental results is still lacking. We systematize various theories of helical transport with the help of the spin conservation analysis which allows one to single out setups with the ballistic conductance being robustly protected regardless of the electron backscattering. First, we briefly review different theories of edge transport in the QSH samples with and without the spin axial symmetry of the electrons including those theoretical predictions which are not consistent with the spin conservation analysis and, thus, call for a deeper study. Next, we illustrate the general approach by a detailed study of representative examples. One of them addresses the helical edge coupled to an array of Heisenberg-interacting magnetic impurities (MIs) and demonstrates that the conductance remains ballistic even if the time-reversal symmetry on the edge is (locally) broken but the total spin is conserved. Another example focuses on the effects of the space-fluctuating spin–orbit interaction on the QSH edge. It reveals weakness of the protection in several cases, including, e.g. the presence of either the U(1)-symmetric, though not fully isotropic, MIs or generic electron–electron interactions.</description><subject>Conservation</subject><subject>Electron back scatter</subject><subject>Electron spin</subject><subject>Fragility</subject><subject>Physics</subject><subject>protected helical transport</subject><subject>quantum spin Hall samples</subject><subject>Spin-orbit interactions</subject><subject>Symmetry</subject><subject>topological insulators</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1v1DAUxCNEJUrLnaMlDlwI9WficENVoZUqwaE9W2_t5yWrJHZtr8T-93gbVHooF9tvNPOzrWma94x-ZlTrCya6vuWdoBdgFcXhVXP6JL1-dn7TvM15RyljmvPTZvqZQkFbxrCQ4Am6LZKSYMkxpELGhTzsYSn7meRYh2uYJpJhjhPmL49Smw_zjCUdyAYyOrLFBRNMBGJMAewvAosj-HuNnDcnHqaM7_7uZ839t6u7y-v29sf3m8uvt62VUpcW7cBVLwG0doPTHXcKh7ryXjjYIApgSlDBGXdCeaEsDIyz3neSq40YrDhrblauC7AzMY0zpIMJMJpHIaStgVRGO6FhkooeeGf9oKTv3CCod4pr6urAACvrw8qq_3nYYy5mF_Zpqc83vJOU0l73rLro6rIp5JzQP93KqDn2Y44FmGMBZu2nRj6ukTHEf8xlFw2XhhvKBZXUROer89MLzv-C_wBFQZ6w</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Yevtushenko, Oleg M</creator><creator>Yudson, Vladimir I</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20220201</creationdate><title>Protection of edge transport in quantum spin Hall samples: spin-symmetry based general approach and examples</title><author>Yevtushenko, Oleg M ; Yudson, Vladimir I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-ec92574aa88d9d862d5e962d273dabee3a15303212d35f35ca91217f6425b39c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conservation</topic><topic>Electron back scatter</topic><topic>Electron spin</topic><topic>Fragility</topic><topic>Physics</topic><topic>protected helical transport</topic><topic>quantum spin Hall samples</topic><topic>Spin-orbit interactions</topic><topic>Symmetry</topic><topic>topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yevtushenko, Oleg M</creatorcontrib><creatorcontrib>Yudson, Vladimir I</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yevtushenko, Oleg M</au><au>Yudson, Vladimir I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protection of edge transport in quantum spin Hall samples: spin-symmetry based general approach and examples</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>24</volume><issue>2</issue><spage>23040</spage><pages>23040-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Understanding possible mechanisms, which can lead to suppression of helical edge transport in quantum spin Hall (QSH) systems, attracted huge attention right after the first experiments revealing the fragility of the ballistic conductance. Despite the very intensive research and the abundance of theoretical models, the fully consistent explanation of the experimental results is still lacking. We systematize various theories of helical transport with the help of the spin conservation analysis which allows one to single out setups with the ballistic conductance being robustly protected regardless of the electron backscattering. First, we briefly review different theories of edge transport in the QSH samples with and without the spin axial symmetry of the electrons including those theoretical predictions which are not consistent with the spin conservation analysis and, thus, call for a deeper study. Next, we illustrate the general approach by a detailed study of representative examples. One of them addresses the helical edge coupled to an array of Heisenberg-interacting magnetic impurities (MIs) and demonstrates that the conductance remains ballistic even if the time-reversal symmetry on the edge is (locally) broken but the total spin is conserved. Another example focuses on the effects of the space-fluctuating spin–orbit interaction on the QSH edge. It reveals weakness of the protection in several cases, including, e.g. the presence of either the U(1)-symmetric, though not fully isotropic, MIs or generic electron–electron interactions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ac50e9</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2022-02, Vol.24 (2), p.23040 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_proquest_journals_2640007871 |
source | Publicly Available Content (ProQuest) |
subjects | Conservation Electron back scatter Electron spin Fragility Physics protected helical transport quantum spin Hall samples Spin-orbit interactions Symmetry topological insulators |
title | Protection of edge transport in quantum spin Hall samples: spin-symmetry based general approach and examples |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protection%20of%20edge%20transport%20in%20quantum%20spin%20Hall%20samples:%20spin-symmetry%20based%20general%20approach%20and%20examples&rft.jtitle=New%20journal%20of%20physics&rft.au=Yevtushenko,%20Oleg%20M&rft.date=2022-02-01&rft.volume=24&rft.issue=2&rft.spage=23040&rft.pages=23040-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ac50e9&rft_dat=%3Cproquest_cross%3E2640007871%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-ec92574aa88d9d862d5e962d273dabee3a15303212d35f35ca91217f6425b39c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2640007871&rft_id=info:pmid/&rfr_iscdi=true |