Loading…

Real-time embedded eye detection system

The detection of a person’s eyes is a basic task in applications as important as iris recognition in biometric identification or fatigue detection in driving assistance systems. Current commercial and research systems use software frameworks that require a dedicated computer, whose power consumption...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2022-05, Vol.194, p.116505, Article 116505
Main Authors: Ruiz-Beltrán, Camilo A., Romero-Garcés, Adrián, González, Martín, Pedraza, Antonio Sánchez, Rodríguez-Fernández, Juan A., Bandera, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-8ce0f0871ce1e11756100b99c04d07ae077e617173cd65050f1fea50bf0625ab3
cites cdi_FETCH-LOGICAL-c372t-8ce0f0871ce1e11756100b99c04d07ae077e617173cd65050f1fea50bf0625ab3
container_end_page
container_issue
container_start_page 116505
container_title Expert systems with applications
container_volume 194
creator Ruiz-Beltrán, Camilo A.
Romero-Garcés, Adrián
González, Martín
Pedraza, Antonio Sánchez
Rodríguez-Fernández, Juan A.
Bandera, Antonio
description The detection of a person’s eyes is a basic task in applications as important as iris recognition in biometric identification or fatigue detection in driving assistance systems. Current commercial and research systems use software frameworks that require a dedicated computer, whose power consumption, size and price are significantly large. This paper presents a hardware-based embedded solution for eye detection in real-time. From an algorithmic point-of-view, the popular Viola–Jones approach has been redesigned to enable highly parallel, single-pass image-processing implementation. Synthesized and implemented in an All-Programmable System-on-Chip (AP SoC), this proposal allows us to process more than 88 frames per second (fps), taking the classifier less than 2 ms per image. Experimental validation has been successfully addressed in an iris recognition system that works with walking subjects. In this case, the prototype module includes a CMOS digital imaging sensor providing 16 Mpixels images, and it outputs a stream of detected eyes as 640 × 480 images. Experiments for determining the accuracy of the proposed system in terms of eye detection are performed in the CASIA-Iris-distance V4 database. Significantly, they show that the accuracy in terms of eye detection is 100%. •A single-pass image-processing redesign of the Viola–Jones approach is proposed.•The classifier core can process more than 750 fps.•An accuracy rate of 100% is obtained using the CASIA-Iris-distance V4 database.•The proposal is integrated into a framework for iris identification on motion.
doi_str_mv 10.1016/j.eswa.2022.116505
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640098624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417422000070</els_id><sourcerecordid>2640098624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-8ce0f0871ce1e11756100b99c04d07ae077e617173cd65050f1fea50bf0625ab3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8FD55aZ9I204IXWfyCBUH0HNpkCinbdk26yv57W-rZ01zeZ-adR4hrhAQB1V2bcPipEglSJogqh_xErLCgNFZUpqdiBWVOcYaUnYuLEFoAJABaidt3rnbx6DqOuKvZWrYRHzmyPLIZ3dBH4RhG7i7FWVPtAl_9zbX4fHr82LzE27fn183DNjYpyTEuDEMDBaFhZETKFQLUZWkgs0AVAxErJKTU2LklNNhwlUPdgJJ5VadrcbPs3fvh68Bh1O1w8P10UkuVAZSFktmUkkvK-CEEz43ee9dV_qgR9CxEt3oWomchehEyQfcLxFP_b8deB-O4N2ydn37VdnD_4b8zdGb_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640098624</pqid></control><display><type>article</type><title>Real-time embedded eye detection system</title><source>ScienceDirect Freedom Collection</source><creator>Ruiz-Beltrán, Camilo A. ; Romero-Garcés, Adrián ; González, Martín ; Pedraza, Antonio Sánchez ; Rodríguez-Fernández, Juan A. ; Bandera, Antonio</creator><creatorcontrib>Ruiz-Beltrán, Camilo A. ; Romero-Garcés, Adrián ; González, Martín ; Pedraza, Antonio Sánchez ; Rodríguez-Fernández, Juan A. ; Bandera, Antonio</creatorcontrib><description>The detection of a person’s eyes is a basic task in applications as important as iris recognition in biometric identification or fatigue detection in driving assistance systems. Current commercial and research systems use software frameworks that require a dedicated computer, whose power consumption, size and price are significantly large. This paper presents a hardware-based embedded solution for eye detection in real-time. From an algorithmic point-of-view, the popular Viola–Jones approach has been redesigned to enable highly parallel, single-pass image-processing implementation. Synthesized and implemented in an All-Programmable System-on-Chip (AP SoC), this proposal allows us to process more than 88 frames per second (fps), taking the classifier less than 2 ms per image. Experimental validation has been successfully addressed in an iris recognition system that works with walking subjects. In this case, the prototype module includes a CMOS digital imaging sensor providing 16 Mpixels images, and it outputs a stream of detected eyes as 640 × 480 images. Experiments for determining the accuracy of the proposed system in terms of eye detection are performed in the CASIA-Iris-distance V4 database. Significantly, they show that the accuracy in terms of eye detection is 100%. •A single-pass image-processing redesign of the Viola–Jones approach is proposed.•The classifier core can process more than 750 fps.•An accuracy rate of 100% is obtained using the CASIA-Iris-distance V4 database.•The proposal is integrated into a framework for iris identification on motion.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2022.116505</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Advanced driver assistance systems ; All programmable System-on-Chip ; Biometric recognition systems ; Digital imaging ; Driver fatigue ; Embedded systems ; Eye detection ; Frames per second ; Image processing ; Object recognition ; Power consumption ; Real time ; System on chip ; Viola–Jones algorithm</subject><ispartof>Expert systems with applications, 2022-05, Vol.194, p.116505, Article 116505</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier BV May 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-8ce0f0871ce1e11756100b99c04d07ae077e617173cd65050f1fea50bf0625ab3</citedby><cites>FETCH-LOGICAL-c372t-8ce0f0871ce1e11756100b99c04d07ae077e617173cd65050f1fea50bf0625ab3</cites><orcidid>0000-0003-3147-0307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ruiz-Beltrán, Camilo A.</creatorcontrib><creatorcontrib>Romero-Garcés, Adrián</creatorcontrib><creatorcontrib>González, Martín</creatorcontrib><creatorcontrib>Pedraza, Antonio Sánchez</creatorcontrib><creatorcontrib>Rodríguez-Fernández, Juan A.</creatorcontrib><creatorcontrib>Bandera, Antonio</creatorcontrib><title>Real-time embedded eye detection system</title><title>Expert systems with applications</title><description>The detection of a person’s eyes is a basic task in applications as important as iris recognition in biometric identification or fatigue detection in driving assistance systems. Current commercial and research systems use software frameworks that require a dedicated computer, whose power consumption, size and price are significantly large. This paper presents a hardware-based embedded solution for eye detection in real-time. From an algorithmic point-of-view, the popular Viola–Jones approach has been redesigned to enable highly parallel, single-pass image-processing implementation. Synthesized and implemented in an All-Programmable System-on-Chip (AP SoC), this proposal allows us to process more than 88 frames per second (fps), taking the classifier less than 2 ms per image. Experimental validation has been successfully addressed in an iris recognition system that works with walking subjects. In this case, the prototype module includes a CMOS digital imaging sensor providing 16 Mpixels images, and it outputs a stream of detected eyes as 640 × 480 images. Experiments for determining the accuracy of the proposed system in terms of eye detection are performed in the CASIA-Iris-distance V4 database. Significantly, they show that the accuracy in terms of eye detection is 100%. •A single-pass image-processing redesign of the Viola–Jones approach is proposed.•The classifier core can process more than 750 fps.•An accuracy rate of 100% is obtained using the CASIA-Iris-distance V4 database.•The proposal is integrated into a framework for iris identification on motion.</description><subject>Advanced driver assistance systems</subject><subject>All programmable System-on-Chip</subject><subject>Biometric recognition systems</subject><subject>Digital imaging</subject><subject>Driver fatigue</subject><subject>Embedded systems</subject><subject>Eye detection</subject><subject>Frames per second</subject><subject>Image processing</subject><subject>Object recognition</subject><subject>Power consumption</subject><subject>Real time</subject><subject>System on chip</subject><subject>Viola–Jones algorithm</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8FD55aZ9I204IXWfyCBUH0HNpkCinbdk26yv57W-rZ01zeZ-adR4hrhAQB1V2bcPipEglSJogqh_xErLCgNFZUpqdiBWVOcYaUnYuLEFoAJABaidt3rnbx6DqOuKvZWrYRHzmyPLIZ3dBH4RhG7i7FWVPtAl_9zbX4fHr82LzE27fn183DNjYpyTEuDEMDBaFhZETKFQLUZWkgs0AVAxErJKTU2LklNNhwlUPdgJJ5VadrcbPs3fvh68Bh1O1w8P10UkuVAZSFktmUkkvK-CEEz43ee9dV_qgR9CxEt3oWomchehEyQfcLxFP_b8deB-O4N2ydn37VdnD_4b8zdGb_</recordid><startdate>20220515</startdate><enddate>20220515</enddate><creator>Ruiz-Beltrán, Camilo A.</creator><creator>Romero-Garcés, Adrián</creator><creator>González, Martín</creator><creator>Pedraza, Antonio Sánchez</creator><creator>Rodríguez-Fernández, Juan A.</creator><creator>Bandera, Antonio</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3147-0307</orcidid></search><sort><creationdate>20220515</creationdate><title>Real-time embedded eye detection system</title><author>Ruiz-Beltrán, Camilo A. ; Romero-Garcés, Adrián ; González, Martín ; Pedraza, Antonio Sánchez ; Rodríguez-Fernández, Juan A. ; Bandera, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-8ce0f0871ce1e11756100b99c04d07ae077e617173cd65050f1fea50bf0625ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advanced driver assistance systems</topic><topic>All programmable System-on-Chip</topic><topic>Biometric recognition systems</topic><topic>Digital imaging</topic><topic>Driver fatigue</topic><topic>Embedded systems</topic><topic>Eye detection</topic><topic>Frames per second</topic><topic>Image processing</topic><topic>Object recognition</topic><topic>Power consumption</topic><topic>Real time</topic><topic>System on chip</topic><topic>Viola–Jones algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz-Beltrán, Camilo A.</creatorcontrib><creatorcontrib>Romero-Garcés, Adrián</creatorcontrib><creatorcontrib>González, Martín</creatorcontrib><creatorcontrib>Pedraza, Antonio Sánchez</creatorcontrib><creatorcontrib>Rodríguez-Fernández, Juan A.</creatorcontrib><creatorcontrib>Bandera, Antonio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz-Beltrán, Camilo A.</au><au>Romero-Garcés, Adrián</au><au>González, Martín</au><au>Pedraza, Antonio Sánchez</au><au>Rodríguez-Fernández, Juan A.</au><au>Bandera, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time embedded eye detection system</atitle><jtitle>Expert systems with applications</jtitle><date>2022-05-15</date><risdate>2022</risdate><volume>194</volume><spage>116505</spage><pages>116505-</pages><artnum>116505</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>The detection of a person’s eyes is a basic task in applications as important as iris recognition in biometric identification or fatigue detection in driving assistance systems. Current commercial and research systems use software frameworks that require a dedicated computer, whose power consumption, size and price are significantly large. This paper presents a hardware-based embedded solution for eye detection in real-time. From an algorithmic point-of-view, the popular Viola–Jones approach has been redesigned to enable highly parallel, single-pass image-processing implementation. Synthesized and implemented in an All-Programmable System-on-Chip (AP SoC), this proposal allows us to process more than 88 frames per second (fps), taking the classifier less than 2 ms per image. Experimental validation has been successfully addressed in an iris recognition system that works with walking subjects. In this case, the prototype module includes a CMOS digital imaging sensor providing 16 Mpixels images, and it outputs a stream of detected eyes as 640 × 480 images. Experiments for determining the accuracy of the proposed system in terms of eye detection are performed in the CASIA-Iris-distance V4 database. Significantly, they show that the accuracy in terms of eye detection is 100%. •A single-pass image-processing redesign of the Viola–Jones approach is proposed.•The classifier core can process more than 750 fps.•An accuracy rate of 100% is obtained using the CASIA-Iris-distance V4 database.•The proposal is integrated into a framework for iris identification on motion.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2022.116505</doi><orcidid>https://orcid.org/0000-0003-3147-0307</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2022-05, Vol.194, p.116505, Article 116505
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2640098624
source ScienceDirect Freedom Collection
subjects Advanced driver assistance systems
All programmable System-on-Chip
Biometric recognition systems
Digital imaging
Driver fatigue
Embedded systems
Eye detection
Frames per second
Image processing
Object recognition
Power consumption
Real time
System on chip
Viola–Jones algorithm
title Real-time embedded eye detection system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20embedded%20eye%20detection%20system&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Ruiz-Beltr%C3%A1n,%20Camilo%20A.&rft.date=2022-05-15&rft.volume=194&rft.spage=116505&rft.pages=116505-&rft.artnum=116505&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2022.116505&rft_dat=%3Cproquest_cross%3E2640098624%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-8ce0f0871ce1e11756100b99c04d07ae077e617173cd65050f1fea50bf0625ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2640098624&rft_id=info:pmid/&rfr_iscdi=true