Loading…
Finite-time extended dissipativity control for interval type-2 fuzzy systems with resilient memory sampled-data controller
In this work, the finite-time extended dissipativity of the interval type-2 (IT2) fuzzy systems with probabilistic time-varying delay is discussed via resilient memory sampled-data control. To enable the stability analysis and control combination, an IT2 fuzzy model is employed to represent the dyna...
Saved in:
Published in: | Journal of the Franklin Institute 2022-01, Vol.359 (2), p.1320-1346 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, the finite-time extended dissipativity of the interval type-2 (IT2) fuzzy systems with probabilistic time-varying delay is discussed via resilient memory sampled-data control. To enable the stability analysis and control combination, an IT2 fuzzy model is employed to represent the dynamics of nonlinear systems of which the parameter uncertainties are taken by IT2 membership functions distinguish by the lower and upper membership functions. The main objective of this paper is to design a resilient memory sampled-data controller such that the resulting closed-loop system is finite-time bounded and satisfies extended dissipative performance. Moreover, the solvability of the derived conditions not only depends on the size of the delay but also on the probabilistic distribution of the delay taking values in some interval, thus probabilistic delay protocol is encountered in the IT2 fuzzy model. By employing suitable Lyapunov-Krasovskii functional (LKF) along with Wirtinger-based inequality, a set of sufficient conditions ensuring the finite-time extended dissipative performance for IT2 fuzzy systems are derived in terms of linear matrix inequalities (LMIs). Finally, two numerical simulations are presented to reveal the effectiveness of the developed technique. |
---|---|
ISSN: | 0016-0032 1879-2693 0016-0032 |
DOI: | 10.1016/j.jfranklin.2021.11.011 |