Loading…
Short-Term Forecasting Error Assessment of Solar Power Plant Generation and the Error Influence on Plant Economics in Conditions in Russia
The production forecast error for an experimental photovoltaic installation in Moscow and an autonomous solar power plant (SPP) in Yailyu village, Altai Republic, has been estimated by dynamic simulation of SPP operation. It is shown that the root-mean-square error of the production forecast accordi...
Saved in:
Published in: | Applied solar energy 2021, Vol.57 (4), p.347-353 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c161X-122fae991f483c84cd0d9db428a26b19bcf3d3555fd5acdb35d008bdb3b50ae03 |
---|---|
cites | cdi_FETCH-LOGICAL-c161X-122fae991f483c84cd0d9db428a26b19bcf3d3555fd5acdb35d008bdb3b50ae03 |
container_end_page | 353 |
container_issue | 4 |
container_start_page | 347 |
container_title | Applied solar energy |
container_volume | 57 |
creator | Kiseleva, S. V. Lisitskaya, N. V. Mordynskiy, A. V. Frid, S. E. |
description | The production forecast error for an experimental photovoltaic installation in Moscow and an autonomous solar power plant (SPP) in Yailyu village, Altai Republic, has been estimated by dynamic simulation of SPP operation. It is shown that the root-mean-square error of the production forecast according to numerical weather prediction data (NWP, ICON model) for the considered installations is 16–24% (normalized to the installed capacity of the SPP). A weak and spatially nonuniform seasonal dependence of the error has been found. A statistical forecasting method using artificial neural networks (ANNs) was tested the effectiveness of which was compared with dynamic simulation based on ICON data. Statistical models showed more accurate results of production forecast for the Moscow region, while for the Yailyu SPP the situation is the opposite: dynamic simulation using NWP showed higher efficiency in terms of the root-mean-square error of the forecast. The analysis of the economic effect of errors shows that for an error of 13–14%, the economic losses of the SPP from not complying with the dispatch schedule are 15–20%. |
doi_str_mv | 10.3103/S0003701X2104006X |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640558938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640558938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c161X-122fae991f483c84cd0d9db428a26b19bcf3d3555fd5acdb35d008bdb3b50ae03</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuA19WTj9b2coxtDgaKm7C7kibp1tEmM2kR_4K_2tQOvBBvztf7PufAQeiWwD0jwB7WAMAegWwpAQ6QbM_QiGSMRxmn_ByNejnq9Ut05f0hdEBTMkJf6711bbTRrsFz67QUvq3MDs-csw5PvNfeN9q02JZ4bWvh8Iv90CHWIgwX2mgn2soaLIzC7V6fwKUp604bqXGQBu9MWmObSnpcGTy1RlU999O9dt5X4hpdlKL2-uaUx-htPttMn6LV82I5nawiSRKyjQilpdBZRkqeMplyqUBlquA0FTQpSFbIkikWx3GpYiFVwWIFkBahKGIQGtgY3Q17j86-d9q3-cF2zoSTOU04xHGasTS4yOCSznrvdJkfXdUI95kTyPuX539eHhg6MD54zU67383_Q9-LmYVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640558938</pqid></control><display><type>article</type><title>Short-Term Forecasting Error Assessment of Solar Power Plant Generation and the Error Influence on Plant Economics in Conditions in Russia</title><source>Springer Link</source><creator>Kiseleva, S. V. ; Lisitskaya, N. V. ; Mordynskiy, A. V. ; Frid, S. E.</creator><creatorcontrib>Kiseleva, S. V. ; Lisitskaya, N. V. ; Mordynskiy, A. V. ; Frid, S. E.</creatorcontrib><description>The production forecast error for an experimental photovoltaic installation in Moscow and an autonomous solar power plant (SPP) in Yailyu village, Altai Republic, has been estimated by dynamic simulation of SPP operation. It is shown that the root-mean-square error of the production forecast according to numerical weather prediction data (NWP, ICON model) for the considered installations is 16–24% (normalized to the installed capacity of the SPP). A weak and spatially nonuniform seasonal dependence of the error has been found. A statistical forecasting method using artificial neural networks (ANNs) was tested the effectiveness of which was compared with dynamic simulation based on ICON data. Statistical models showed more accurate results of production forecast for the Moscow region, while for the Yailyu SPP the situation is the opposite: dynamic simulation using NWP showed higher efficiency in terms of the root-mean-square error of the forecast. The analysis of the economic effect of errors shows that for an error of 13–14%, the economic losses of the SPP from not complying with the dispatch schedule are 15–20%.</description><identifier>ISSN: 0003-701X</identifier><identifier>EISSN: 1934-9424</identifier><identifier>DOI: 10.3103/S0003701X2104006X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial neural networks ; Economic analysis ; Economic forecasting ; Economic impact ; Economics ; Electrical Machines and Networks ; Engineering ; Error analysis ; Mathematical models ; Neural networks ; Numerical prediction ; Numerical weather forecasting ; Photovoltaics ; Power Electronics ; Power plants ; Predicting Solar Radiation ; Root-mean-square errors ; Simulation ; Solar energy ; Solar power plants ; Statistical analysis ; Statistical models ; Weather forecasting</subject><ispartof>Applied solar energy, 2021, Vol.57 (4), p.347-353</ispartof><rights>Allerton Press, Inc. 2021. ISSN 0003-701X, Applied Solar Energy, 2021, Vol. 57, No. 4, pp. 347–353. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2021, published in Geliotekhnika, 2021, No. 4, pp. 447–455.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c161X-122fae991f483c84cd0d9db428a26b19bcf3d3555fd5acdb35d008bdb3b50ae03</citedby><cites>FETCH-LOGICAL-c161X-122fae991f483c84cd0d9db428a26b19bcf3d3555fd5acdb35d008bdb3b50ae03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kiseleva, S. V.</creatorcontrib><creatorcontrib>Lisitskaya, N. V.</creatorcontrib><creatorcontrib>Mordynskiy, A. V.</creatorcontrib><creatorcontrib>Frid, S. E.</creatorcontrib><title>Short-Term Forecasting Error Assessment of Solar Power Plant Generation and the Error Influence on Plant Economics in Conditions in Russia</title><title>Applied solar energy</title><addtitle>Appl. Sol. Energy</addtitle><description>The production forecast error for an experimental photovoltaic installation in Moscow and an autonomous solar power plant (SPP) in Yailyu village, Altai Republic, has been estimated by dynamic simulation of SPP operation. It is shown that the root-mean-square error of the production forecast according to numerical weather prediction data (NWP, ICON model) for the considered installations is 16–24% (normalized to the installed capacity of the SPP). A weak and spatially nonuniform seasonal dependence of the error has been found. A statistical forecasting method using artificial neural networks (ANNs) was tested the effectiveness of which was compared with dynamic simulation based on ICON data. Statistical models showed more accurate results of production forecast for the Moscow region, while for the Yailyu SPP the situation is the opposite: dynamic simulation using NWP showed higher efficiency in terms of the root-mean-square error of the forecast. The analysis of the economic effect of errors shows that for an error of 13–14%, the economic losses of the SPP from not complying with the dispatch schedule are 15–20%.</description><subject>Artificial neural networks</subject><subject>Economic analysis</subject><subject>Economic forecasting</subject><subject>Economic impact</subject><subject>Economics</subject><subject>Electrical Machines and Networks</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Numerical prediction</subject><subject>Numerical weather forecasting</subject><subject>Photovoltaics</subject><subject>Power Electronics</subject><subject>Power plants</subject><subject>Predicting Solar Radiation</subject><subject>Root-mean-square errors</subject><subject>Simulation</subject><subject>Solar energy</subject><subject>Solar power plants</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Weather forecasting</subject><issn>0003-701X</issn><issn>1934-9424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKc_wLuA19WTj9b2coxtDgaKm7C7kibp1tEmM2kR_4K_2tQOvBBvztf7PufAQeiWwD0jwB7WAMAegWwpAQ6QbM_QiGSMRxmn_ByNejnq9Ut05f0hdEBTMkJf6711bbTRrsFz67QUvq3MDs-csw5PvNfeN9q02JZ4bWvh8Iv90CHWIgwX2mgn2soaLIzC7V6fwKUp604bqXGQBu9MWmObSnpcGTy1RlU999O9dt5X4hpdlKL2-uaUx-htPttMn6LV82I5nawiSRKyjQilpdBZRkqeMplyqUBlquA0FTQpSFbIkikWx3GpYiFVwWIFkBahKGIQGtgY3Q17j86-d9q3-cF2zoSTOU04xHGasTS4yOCSznrvdJkfXdUI95kTyPuX539eHhg6MD54zU67383_Q9-LmYVA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Kiseleva, S. V.</creator><creator>Lisitskaya, N. V.</creator><creator>Mordynskiy, A. V.</creator><creator>Frid, S. E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2021</creationdate><title>Short-Term Forecasting Error Assessment of Solar Power Plant Generation and the Error Influence on Plant Economics in Conditions in Russia</title><author>Kiseleva, S. V. ; Lisitskaya, N. V. ; Mordynskiy, A. V. ; Frid, S. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c161X-122fae991f483c84cd0d9db428a26b19bcf3d3555fd5acdb35d008bdb3b50ae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Economic analysis</topic><topic>Economic forecasting</topic><topic>Economic impact</topic><topic>Economics</topic><topic>Electrical Machines and Networks</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Numerical prediction</topic><topic>Numerical weather forecasting</topic><topic>Photovoltaics</topic><topic>Power Electronics</topic><topic>Power plants</topic><topic>Predicting Solar Radiation</topic><topic>Root-mean-square errors</topic><topic>Simulation</topic><topic>Solar energy</topic><topic>Solar power plants</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiseleva, S. V.</creatorcontrib><creatorcontrib>Lisitskaya, N. V.</creatorcontrib><creatorcontrib>Mordynskiy, A. V.</creatorcontrib><creatorcontrib>Frid, S. E.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiseleva, S. V.</au><au>Lisitskaya, N. V.</au><au>Mordynskiy, A. V.</au><au>Frid, S. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-Term Forecasting Error Assessment of Solar Power Plant Generation and the Error Influence on Plant Economics in Conditions in Russia</atitle><jtitle>Applied solar energy</jtitle><stitle>Appl. Sol. Energy</stitle><date>2021</date><risdate>2021</risdate><volume>57</volume><issue>4</issue><spage>347</spage><epage>353</epage><pages>347-353</pages><issn>0003-701X</issn><eissn>1934-9424</eissn><abstract>The production forecast error for an experimental photovoltaic installation in Moscow and an autonomous solar power plant (SPP) in Yailyu village, Altai Republic, has been estimated by dynamic simulation of SPP operation. It is shown that the root-mean-square error of the production forecast according to numerical weather prediction data (NWP, ICON model) for the considered installations is 16–24% (normalized to the installed capacity of the SPP). A weak and spatially nonuniform seasonal dependence of the error has been found. A statistical forecasting method using artificial neural networks (ANNs) was tested the effectiveness of which was compared with dynamic simulation based on ICON data. Statistical models showed more accurate results of production forecast for the Moscow region, while for the Yailyu SPP the situation is the opposite: dynamic simulation using NWP showed higher efficiency in terms of the root-mean-square error of the forecast. The analysis of the economic effect of errors shows that for an error of 13–14%, the economic losses of the SPP from not complying with the dispatch schedule are 15–20%.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0003701X2104006X</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-701X |
ispartof | Applied solar energy, 2021, Vol.57 (4), p.347-353 |
issn | 0003-701X 1934-9424 |
language | eng |
recordid | cdi_proquest_journals_2640558938 |
source | Springer Link |
subjects | Artificial neural networks Economic analysis Economic forecasting Economic impact Economics Electrical Machines and Networks Engineering Error analysis Mathematical models Neural networks Numerical prediction Numerical weather forecasting Photovoltaics Power Electronics Power plants Predicting Solar Radiation Root-mean-square errors Simulation Solar energy Solar power plants Statistical analysis Statistical models Weather forecasting |
title | Short-Term Forecasting Error Assessment of Solar Power Plant Generation and the Error Influence on Plant Economics in Conditions in Russia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-Term%20Forecasting%20Error%20Assessment%20of%20Solar%20Power%20Plant%20Generation%20and%20the%20Error%20Influence%20on%20Plant%20Economics%20in%20Conditions%20in%20Russia&rft.jtitle=Applied%20solar%20energy&rft.au=Kiseleva,%20S.%20V.&rft.date=2021&rft.volume=57&rft.issue=4&rft.spage=347&rft.epage=353&rft.pages=347-353&rft.issn=0003-701X&rft.eissn=1934-9424&rft_id=info:doi/10.3103/S0003701X2104006X&rft_dat=%3Cproquest_cross%3E2640558938%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c161X-122fae991f483c84cd0d9db428a26b19bcf3d3555fd5acdb35d008bdb3b50ae03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2640558938&rft_id=info:pmid/&rfr_iscdi=true |