Loading…

Short-Term Forecasting Error Assessment of Solar Power Plant Generation and the Error Influence on Plant Economics in Conditions in Russia

The production forecast error for an experimental photovoltaic installation in Moscow and an autonomous solar power plant (SPP) in Yailyu village, Altai Republic, has been estimated by dynamic simulation of SPP operation. It is shown that the root-mean-square error of the production forecast accordi...

Full description

Saved in:
Bibliographic Details
Published in:Applied solar energy 2021, Vol.57 (4), p.347-353
Main Authors: Kiseleva, S. V., Lisitskaya, N. V., Mordynskiy, A. V., Frid, S. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c161X-122fae991f483c84cd0d9db428a26b19bcf3d3555fd5acdb35d008bdb3b50ae03
cites cdi_FETCH-LOGICAL-c161X-122fae991f483c84cd0d9db428a26b19bcf3d3555fd5acdb35d008bdb3b50ae03
container_end_page 353
container_issue 4
container_start_page 347
container_title Applied solar energy
container_volume 57
creator Kiseleva, S. V.
Lisitskaya, N. V.
Mordynskiy, A. V.
Frid, S. E.
description The production forecast error for an experimental photovoltaic installation in Moscow and an autonomous solar power plant (SPP) in Yailyu village, Altai Republic, has been estimated by dynamic simulation of SPP operation. It is shown that the root-mean-square error of the production forecast according to numerical weather prediction data (NWP, ICON model) for the considered installations is 16–24% (normalized to the installed capacity of the SPP). A weak and spatially nonuniform seasonal dependence of the error has been found. A statistical forecasting method using artificial neural networks (ANNs) was tested the effectiveness of which was compared with dynamic simulation based on ICON data. Statistical models showed more accurate results of production forecast for the Moscow region, while for the Yailyu SPP the situation is the opposite: dynamic simulation using NWP showed higher efficiency in terms of the root-mean-square error of the forecast. The analysis of the economic effect of errors shows that for an error of 13–14%, the economic losses of the SPP from not complying with the dispatch schedule are 15–20%.
doi_str_mv 10.3103/S0003701X2104006X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640558938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640558938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c161X-122fae991f483c84cd0d9db428a26b19bcf3d3555fd5acdb35d008bdb3b50ae03</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuA19WTj9b2coxtDgaKm7C7kibp1tEmM2kR_4K_2tQOvBBvztf7PufAQeiWwD0jwB7WAMAegWwpAQ6QbM_QiGSMRxmn_ByNejnq9Ut05f0hdEBTMkJf6711bbTRrsFz67QUvq3MDs-csw5PvNfeN9q02JZ4bWvh8Iv90CHWIgwX2mgn2soaLIzC7V6fwKUp604bqXGQBu9MWmObSnpcGTy1RlU999O9dt5X4hpdlKL2-uaUx-htPttMn6LV82I5nawiSRKyjQilpdBZRkqeMplyqUBlquA0FTQpSFbIkikWx3GpYiFVwWIFkBahKGIQGtgY3Q17j86-d9q3-cF2zoSTOU04xHGasTS4yOCSznrvdJkfXdUI95kTyPuX539eHhg6MD54zU67383_Q9-LmYVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640558938</pqid></control><display><type>article</type><title>Short-Term Forecasting Error Assessment of Solar Power Plant Generation and the Error Influence on Plant Economics in Conditions in Russia</title><source>Springer Link</source><creator>Kiseleva, S. V. ; Lisitskaya, N. V. ; Mordynskiy, A. V. ; Frid, S. E.</creator><creatorcontrib>Kiseleva, S. V. ; Lisitskaya, N. V. ; Mordynskiy, A. V. ; Frid, S. E.</creatorcontrib><description>The production forecast error for an experimental photovoltaic installation in Moscow and an autonomous solar power plant (SPP) in Yailyu village, Altai Republic, has been estimated by dynamic simulation of SPP operation. It is shown that the root-mean-square error of the production forecast according to numerical weather prediction data (NWP, ICON model) for the considered installations is 16–24% (normalized to the installed capacity of the SPP). A weak and spatially nonuniform seasonal dependence of the error has been found. A statistical forecasting method using artificial neural networks (ANNs) was tested the effectiveness of which was compared with dynamic simulation based on ICON data. Statistical models showed more accurate results of production forecast for the Moscow region, while for the Yailyu SPP the situation is the opposite: dynamic simulation using NWP showed higher efficiency in terms of the root-mean-square error of the forecast. The analysis of the economic effect of errors shows that for an error of 13–14%, the economic losses of the SPP from not complying with the dispatch schedule are 15–20%.</description><identifier>ISSN: 0003-701X</identifier><identifier>EISSN: 1934-9424</identifier><identifier>DOI: 10.3103/S0003701X2104006X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial neural networks ; Economic analysis ; Economic forecasting ; Economic impact ; Economics ; Electrical Machines and Networks ; Engineering ; Error analysis ; Mathematical models ; Neural networks ; Numerical prediction ; Numerical weather forecasting ; Photovoltaics ; Power Electronics ; Power plants ; Predicting Solar Radiation ; Root-mean-square errors ; Simulation ; Solar energy ; Solar power plants ; Statistical analysis ; Statistical models ; Weather forecasting</subject><ispartof>Applied solar energy, 2021, Vol.57 (4), p.347-353</ispartof><rights>Allerton Press, Inc. 2021. ISSN 0003-701X, Applied Solar Energy, 2021, Vol. 57, No. 4, pp. 347–353. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2021, published in Geliotekhnika, 2021, No. 4, pp. 447–455.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c161X-122fae991f483c84cd0d9db428a26b19bcf3d3555fd5acdb35d008bdb3b50ae03</citedby><cites>FETCH-LOGICAL-c161X-122fae991f483c84cd0d9db428a26b19bcf3d3555fd5acdb35d008bdb3b50ae03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kiseleva, S. V.</creatorcontrib><creatorcontrib>Lisitskaya, N. V.</creatorcontrib><creatorcontrib>Mordynskiy, A. V.</creatorcontrib><creatorcontrib>Frid, S. E.</creatorcontrib><title>Short-Term Forecasting Error Assessment of Solar Power Plant Generation and the Error Influence on Plant Economics in Conditions in Russia</title><title>Applied solar energy</title><addtitle>Appl. Sol. Energy</addtitle><description>The production forecast error for an experimental photovoltaic installation in Moscow and an autonomous solar power plant (SPP) in Yailyu village, Altai Republic, has been estimated by dynamic simulation of SPP operation. It is shown that the root-mean-square error of the production forecast according to numerical weather prediction data (NWP, ICON model) for the considered installations is 16–24% (normalized to the installed capacity of the SPP). A weak and spatially nonuniform seasonal dependence of the error has been found. A statistical forecasting method using artificial neural networks (ANNs) was tested the effectiveness of which was compared with dynamic simulation based on ICON data. Statistical models showed more accurate results of production forecast for the Moscow region, while for the Yailyu SPP the situation is the opposite: dynamic simulation using NWP showed higher efficiency in terms of the root-mean-square error of the forecast. The analysis of the economic effect of errors shows that for an error of 13–14%, the economic losses of the SPP from not complying with the dispatch schedule are 15–20%.</description><subject>Artificial neural networks</subject><subject>Economic analysis</subject><subject>Economic forecasting</subject><subject>Economic impact</subject><subject>Economics</subject><subject>Electrical Machines and Networks</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Numerical prediction</subject><subject>Numerical weather forecasting</subject><subject>Photovoltaics</subject><subject>Power Electronics</subject><subject>Power plants</subject><subject>Predicting Solar Radiation</subject><subject>Root-mean-square errors</subject><subject>Simulation</subject><subject>Solar energy</subject><subject>Solar power plants</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Weather forecasting</subject><issn>0003-701X</issn><issn>1934-9424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKc_wLuA19WTj9b2coxtDgaKm7C7kibp1tEmM2kR_4K_2tQOvBBvztf7PufAQeiWwD0jwB7WAMAegWwpAQ6QbM_QiGSMRxmn_ByNejnq9Ut05f0hdEBTMkJf6711bbTRrsFz67QUvq3MDs-csw5PvNfeN9q02JZ4bWvh8Iv90CHWIgwX2mgn2soaLIzC7V6fwKUp604bqXGQBu9MWmObSnpcGTy1RlU999O9dt5X4hpdlKL2-uaUx-htPttMn6LV82I5nawiSRKyjQilpdBZRkqeMplyqUBlquA0FTQpSFbIkikWx3GpYiFVwWIFkBahKGIQGtgY3Q17j86-d9q3-cF2zoSTOU04xHGasTS4yOCSznrvdJkfXdUI95kTyPuX539eHhg6MD54zU67383_Q9-LmYVA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Kiseleva, S. V.</creator><creator>Lisitskaya, N. V.</creator><creator>Mordynskiy, A. V.</creator><creator>Frid, S. E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2021</creationdate><title>Short-Term Forecasting Error Assessment of Solar Power Plant Generation and the Error Influence on Plant Economics in Conditions in Russia</title><author>Kiseleva, S. V. ; Lisitskaya, N. V. ; Mordynskiy, A. V. ; Frid, S. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c161X-122fae991f483c84cd0d9db428a26b19bcf3d3555fd5acdb35d008bdb3b50ae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Economic analysis</topic><topic>Economic forecasting</topic><topic>Economic impact</topic><topic>Economics</topic><topic>Electrical Machines and Networks</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Numerical prediction</topic><topic>Numerical weather forecasting</topic><topic>Photovoltaics</topic><topic>Power Electronics</topic><topic>Power plants</topic><topic>Predicting Solar Radiation</topic><topic>Root-mean-square errors</topic><topic>Simulation</topic><topic>Solar energy</topic><topic>Solar power plants</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiseleva, S. V.</creatorcontrib><creatorcontrib>Lisitskaya, N. V.</creatorcontrib><creatorcontrib>Mordynskiy, A. V.</creatorcontrib><creatorcontrib>Frid, S. E.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiseleva, S. V.</au><au>Lisitskaya, N. V.</au><au>Mordynskiy, A. V.</au><au>Frid, S. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-Term Forecasting Error Assessment of Solar Power Plant Generation and the Error Influence on Plant Economics in Conditions in Russia</atitle><jtitle>Applied solar energy</jtitle><stitle>Appl. Sol. Energy</stitle><date>2021</date><risdate>2021</risdate><volume>57</volume><issue>4</issue><spage>347</spage><epage>353</epage><pages>347-353</pages><issn>0003-701X</issn><eissn>1934-9424</eissn><abstract>The production forecast error for an experimental photovoltaic installation in Moscow and an autonomous solar power plant (SPP) in Yailyu village, Altai Republic, has been estimated by dynamic simulation of SPP operation. It is shown that the root-mean-square error of the production forecast according to numerical weather prediction data (NWP, ICON model) for the considered installations is 16–24% (normalized to the installed capacity of the SPP). A weak and spatially nonuniform seasonal dependence of the error has been found. A statistical forecasting method using artificial neural networks (ANNs) was tested the effectiveness of which was compared with dynamic simulation based on ICON data. Statistical models showed more accurate results of production forecast for the Moscow region, while for the Yailyu SPP the situation is the opposite: dynamic simulation using NWP showed higher efficiency in terms of the root-mean-square error of the forecast. The analysis of the economic effect of errors shows that for an error of 13–14%, the economic losses of the SPP from not complying with the dispatch schedule are 15–20%.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0003701X2104006X</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-701X
ispartof Applied solar energy, 2021, Vol.57 (4), p.347-353
issn 0003-701X
1934-9424
language eng
recordid cdi_proquest_journals_2640558938
source Springer Link
subjects Artificial neural networks
Economic analysis
Economic forecasting
Economic impact
Economics
Electrical Machines and Networks
Engineering
Error analysis
Mathematical models
Neural networks
Numerical prediction
Numerical weather forecasting
Photovoltaics
Power Electronics
Power plants
Predicting Solar Radiation
Root-mean-square errors
Simulation
Solar energy
Solar power plants
Statistical analysis
Statistical models
Weather forecasting
title Short-Term Forecasting Error Assessment of Solar Power Plant Generation and the Error Influence on Plant Economics in Conditions in Russia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-Term%20Forecasting%20Error%20Assessment%20of%20Solar%20Power%20Plant%20Generation%20and%20the%20Error%20Influence%20on%20Plant%20Economics%20in%20Conditions%20in%20Russia&rft.jtitle=Applied%20solar%20energy&rft.au=Kiseleva,%20S.%20V.&rft.date=2021&rft.volume=57&rft.issue=4&rft.spage=347&rft.epage=353&rft.pages=347-353&rft.issn=0003-701X&rft.eissn=1934-9424&rft_id=info:doi/10.3103/S0003701X2104006X&rft_dat=%3Cproquest_cross%3E2640558938%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c161X-122fae991f483c84cd0d9db428a26b19bcf3d3555fd5acdb35d008bdb3b50ae03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2640558938&rft_id=info:pmid/&rfr_iscdi=true