Loading…

Features of the Electronic Structure of Excited Quadrupolar Molecules in Non-Polar Solvents

Interactions of the electronic subsystem of the quadrupolar fluorophore with intramolecular highfrequency antisymmetric vibrations and solvent polarization are responsible for charge transfer symmetry breaking (SB), which is observed after optical excitation of such molecules in polar solvents. It i...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical Physics and Computer Modeling 2021-07, Vol.24 (2), p.68-84
Main Authors: Siplivy, Nickolay, Ivanov, Anatoly
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interactions of the electronic subsystem of the quadrupolar fluorophore with intramolecular highfrequency antisymmetric vibrations and solvent polarization are responsible for charge transfer symmetry breaking (SB), which is observed after optical excitation of such molecules in polar solvents. It is known that although these two interactions are mathematically described in similar ways, only the interaction of the fluorophore with solvent orientational polarization can create a state with broken symmetry if this interaction is strong enough. Nevertheless, the interaction of a quadrupolar fluorophore with intramolecular highfrequency antisymmetric vibrations in nonpolar solvents leads to a considerable reconstruction of the electronic subsystem. The analysis of the excited state of quadrupolar molecules in nonpolar solvents performed in this study reveals that such molecules can behave like quantum twostate systems, that is, as a quasispin s = 1/2, having an electric dipole moment instead of a magnetic one. This feature of excited quadrupolar molecules may be of interest to emerging technologies of molecular electronics.
ISSN:2587-6325
2587-6902
DOI:10.15688/mpcm.jvolsu.2021.2.6