Loading…
On a conjecture of spectral extremal problems
For a simple graph \(F\), let \(\mathrm{Ex}(n, F)\) and \(\mathrm{Ex_{sp}}(n,F)\) denote the set of graphs with the maximum number of edges and the set of graphs with the maximum spectral radius in an \(n\)-vertex graph without any copy of the graph \(F\), respectively. The Turán graph \(T_{n,r}\) i...
Saved in:
Published in: | arXiv.org 2022-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wang, Jing Kang, Liying Xue, Yusai |
description | For a simple graph \(F\), let \(\mathrm{Ex}(n, F)\) and \(\mathrm{Ex_{sp}}(n,F)\) denote the set of graphs with the maximum number of edges and the set of graphs with the maximum spectral radius in an \(n\)-vertex graph without any copy of the graph \(F\), respectively. The Turán graph \(T_{n,r}\) is the complete \(r\)-partite graph on \(n\) vertices where its part sizes are as equal as possible. Cioabă, Desai and Tait [The spectral radius of graphs with no odd wheels, European J. Combin., 99 (2022) 103420] posed the following conjecture: Let \(F\) be any graph such that the graphs in \(\mathrm{Ex}(n,F)\) are Tur\'{a}n graphs plus \(O(1)\) edges. Then \(\mathrm{Ex_{sp}}(n,F)\subset \mathrm{Ex}(n,F)\) for sufficiently large \(n\). In this paper we consider the graph \(F\) such that the graphs in \(\mathrm{Ex}(n, F)\) are obtained from \(T_{n,r}\) by adding \(O(1)\) edges, and prove that if \(G\) has the maximum spectral radius among all \(n\)-vertex graphs not containing \(F\), then \(G\) is a member of \(\mathrm{Ex}(n, F)\) for \(n\) large enough. Then Cioabă, Desai and Tait's conjecture is completely solved. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2641678722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641678722</sourcerecordid><originalsourceid>FETCH-proquest_journals_26416787223</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9c9TSFRIzs_LSk0uKS1KVchPUyguALKLEnMUUitKilJzgYyCovyknNTcYh4G1rTEnOJUXijNzaDs5hri7KELVFBYmlpcEp-VX1qUB5SKNzIzMTQztzA3MjImThUAvDcyFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641678722</pqid></control><display><type>article</type><title>On a conjecture of spectral extremal problems</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Wang, Jing ; Kang, Liying ; Xue, Yusai</creator><creatorcontrib>Wang, Jing ; Kang, Liying ; Xue, Yusai</creatorcontrib><description>For a simple graph \(F\), let \(\mathrm{Ex}(n, F)\) and \(\mathrm{Ex_{sp}}(n,F)\) denote the set of graphs with the maximum number of edges and the set of graphs with the maximum spectral radius in an \(n\)-vertex graph without any copy of the graph \(F\), respectively. The Turán graph \(T_{n,r}\) is the complete \(r\)-partite graph on \(n\) vertices where its part sizes are as equal as possible. Cioabă, Desai and Tait [The spectral radius of graphs with no odd wheels, European J. Combin., 99 (2022) 103420] posed the following conjecture: Let \(F\) be any graph such that the graphs in \(\mathrm{Ex}(n,F)\) are Tur\'{a}n graphs plus \(O(1)\) edges. Then \(\mathrm{Ex_{sp}}(n,F)\subset \mathrm{Ex}(n,F)\) for sufficiently large \(n\). In this paper we consider the graph \(F\) such that the graphs in \(\mathrm{Ex}(n, F)\) are obtained from \(T_{n,r}\) by adding \(O(1)\) edges, and prove that if \(G\) has the maximum spectral radius among all \(n\)-vertex graphs not containing \(F\), then \(G\) is a member of \(\mathrm{Ex}(n, F)\) for \(n\) large enough. Then Cioabă, Desai and Tait's conjecture is completely solved.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Graph theory ; Graphs ; Spectra</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2641678722?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Kang, Liying</creatorcontrib><creatorcontrib>Xue, Yusai</creatorcontrib><title>On a conjecture of spectral extremal problems</title><title>arXiv.org</title><description>For a simple graph \(F\), let \(\mathrm{Ex}(n, F)\) and \(\mathrm{Ex_{sp}}(n,F)\) denote the set of graphs with the maximum number of edges and the set of graphs with the maximum spectral radius in an \(n\)-vertex graph without any copy of the graph \(F\), respectively. The Turán graph \(T_{n,r}\) is the complete \(r\)-partite graph on \(n\) vertices where its part sizes are as equal as possible. Cioabă, Desai and Tait [The spectral radius of graphs with no odd wheels, European J. Combin., 99 (2022) 103420] posed the following conjecture: Let \(F\) be any graph such that the graphs in \(\mathrm{Ex}(n,F)\) are Tur\'{a}n graphs plus \(O(1)\) edges. Then \(\mathrm{Ex_{sp}}(n,F)\subset \mathrm{Ex}(n,F)\) for sufficiently large \(n\). In this paper we consider the graph \(F\) such that the graphs in \(\mathrm{Ex}(n, F)\) are obtained from \(T_{n,r}\) by adding \(O(1)\) edges, and prove that if \(G\) has the maximum spectral radius among all \(n\)-vertex graphs not containing \(F\), then \(G\) is a member of \(\mathrm{Ex}(n, F)\) for \(n\) large enough. Then Cioabă, Desai and Tait's conjecture is completely solved.</description><subject>Apexes</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Spectra</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9c9TSFRIzs_LSk0uKS1KVchPUyguALKLEnMUUitKilJzgYyCovyknNTcYh4G1rTEnOJUXijNzaDs5hri7KELVFBYmlpcEp-VX1qUB5SKNzIzMTQztzA3MjImThUAvDcyFQ</recordid><startdate>20220321</startdate><enddate>20220321</enddate><creator>Wang, Jing</creator><creator>Kang, Liying</creator><creator>Xue, Yusai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220321</creationdate><title>On a conjecture of spectral extremal problems</title><author>Wang, Jing ; Kang, Liying ; Xue, Yusai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26416787223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Spectra</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Kang, Liying</creatorcontrib><creatorcontrib>Xue, Yusai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jing</au><au>Kang, Liying</au><au>Xue, Yusai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On a conjecture of spectral extremal problems</atitle><jtitle>arXiv.org</jtitle><date>2022-03-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>For a simple graph \(F\), let \(\mathrm{Ex}(n, F)\) and \(\mathrm{Ex_{sp}}(n,F)\) denote the set of graphs with the maximum number of edges and the set of graphs with the maximum spectral radius in an \(n\)-vertex graph without any copy of the graph \(F\), respectively. The Turán graph \(T_{n,r}\) is the complete \(r\)-partite graph on \(n\) vertices where its part sizes are as equal as possible. Cioabă, Desai and Tait [The spectral radius of graphs with no odd wheels, European J. Combin., 99 (2022) 103420] posed the following conjecture: Let \(F\) be any graph such that the graphs in \(\mathrm{Ex}(n,F)\) are Tur\'{a}n graphs plus \(O(1)\) edges. Then \(\mathrm{Ex_{sp}}(n,F)\subset \mathrm{Ex}(n,F)\) for sufficiently large \(n\). In this paper we consider the graph \(F\) such that the graphs in \(\mathrm{Ex}(n, F)\) are obtained from \(T_{n,r}\) by adding \(O(1)\) edges, and prove that if \(G\) has the maximum spectral radius among all \(n\)-vertex graphs not containing \(F\), then \(G\) is a member of \(\mathrm{Ex}(n, F)\) for \(n\) large enough. Then Cioabă, Desai and Tait's conjecture is completely solved.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2641678722 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Apexes Graph theory Graphs Spectra |
title | On a conjecture of spectral extremal problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20a%20conjecture%20of%20spectral%20extremal%20problems&rft.jtitle=arXiv.org&rft.au=Wang,%20Jing&rft.date=2022-03-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2641678722%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26416787223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2641678722&rft_id=info:pmid/&rfr_iscdi=true |