Loading…
Quantum Mechanical Simulations of the Radical–Radical Chemistry on Icy Surfaces
The formation of the interstellar complex organic molecules (iCOMs) is a hot topic in astrochemistry. One of the main paradigms trying to reproduce the observations postulates that iCOMs are formed on the ice mantles covering the interstellar dust grains as a result of radical–radical coupling react...
Saved in:
Published in: | The Astrophysical journal. Supplement series 2022-04, Vol.259 (2), p.39 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-1a53bdb88249a06b1b172b8226a021201ae53bb3905accc8164b301eaf14080a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-1a53bdb88249a06b1b172b8226a021201ae53bb3905accc8164b301eaf14080a3 |
container_end_page | |
container_issue | 2 |
container_start_page | 39 |
container_title | The Astrophysical journal. Supplement series |
container_volume | 259 |
creator | Enrique-Romero, Joan Rimola, Albert Ceccarelli, Cecilia Ugliengo, Piero Balucani, Nadia Skouteris, Dimitrios |
description | The formation of the interstellar complex organic molecules (iCOMs) is a hot topic in astrochemistry. One of the main paradigms trying to reproduce the observations postulates that iCOMs are formed on the ice mantles covering the interstellar dust grains as a result of radical–radical coupling reactions. We investigate iCOM formation on the icy surfaces by means of computational quantum mechanical methods. In particular, we study the coupling and direct hydrogen abstraction reactions involving the CH 3 + X systems (X = NH 2 , CH 3 , HCO, CH 3 O, CH 2 OH) and HCO + Y (Y = HCO, CH 3 O, CH 2 OH), plus the CH 2 OH + CH 2 OH and CH 3 O + CH 3 O systems. We computed the activation energy barriers of these reactions, as well as the binding energies of all the studied radicals, by means of density functional theory calculations on two ice water models, made of 33 and 18 water molecules. Then, we estimated the efficiency of each reaction using the reaction activation, desorption, and diffusion energies and derived kinetics with the Eyring equations. We find that radical–radical chemistry on surfaces is not as straightforward as usually assumed. In some cases, direct H-abstraction reactions can compete with radical–radical couplings, while in others they may contain large activation energies. Specifically, we found that (i) ethane, methylamine, and ethylene glycol are the only possible products of the relevant radical–radical reactions; (ii) glyoxal, methyl formate, glycolaldehyde, formamide, dimethyl ether, and ethanol formation is likely in competition with the respective H-abstraction products; and (iii) acetaldehyde and dimethyl peroxide do not seem to be likely grain-surface products. |
doi_str_mv | 10.3847/1538-4365/ac480e |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2641897456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641897456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-1a53bdb88249a06b1b172b8226a021201ae53bb3905accc8164b301eaf14080a3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqWwM1piJfQc24kzogpKpSJUCrN1dh01VZMUOxm68Q68IU9ColQwMd3p7vvvpI-QawZ3XIl0wiRXkeCJnKAVCtwJGf2OTskIIEkjAJGdk4sQtgCQSp6NyHLZYtW0JX12doNVYXFHV0XZ7rAp6irQOqfNxtFXXPer78-vY0enG1cWofEHWld0bg901focrQuX5CzHXXBXxzom748Pb9OnaPEym0_vF5HlSjYRQ8nN2igViwwhMcywNDYqjhOEmMXA0HWA4RlItNYqlgjDgTnMmQAFyMfkZri79_VH60Kjt3Xrq-6ljhPBVJYKmXQUDJT1dQje5XrvixL9QTPQvTjdW9K9JT2I6yK3Q6So9383_8V_AN8mbtI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641897456</pqid></control><display><type>article</type><title>Quantum Mechanical Simulations of the Radical–Radical Chemistry on Icy Surfaces</title><source>DOAJ Directory of Open Access Journals</source><creator>Enrique-Romero, Joan ; Rimola, Albert ; Ceccarelli, Cecilia ; Ugliengo, Piero ; Balucani, Nadia ; Skouteris, Dimitrios</creator><creatorcontrib>Enrique-Romero, Joan ; Rimola, Albert ; Ceccarelli, Cecilia ; Ugliengo, Piero ; Balucani, Nadia ; Skouteris, Dimitrios</creatorcontrib><description>The formation of the interstellar complex organic molecules (iCOMs) is a hot topic in astrochemistry. One of the main paradigms trying to reproduce the observations postulates that iCOMs are formed on the ice mantles covering the interstellar dust grains as a result of radical–radical coupling reactions. We investigate iCOM formation on the icy surfaces by means of computational quantum mechanical methods. In particular, we study the coupling and direct hydrogen abstraction reactions involving the CH 3 + X systems (X = NH 2 , CH 3 , HCO, CH 3 O, CH 2 OH) and HCO + Y (Y = HCO, CH 3 O, CH 2 OH), plus the CH 2 OH + CH 2 OH and CH 3 O + CH 3 O systems. We computed the activation energy barriers of these reactions, as well as the binding energies of all the studied radicals, by means of density functional theory calculations on two ice water models, made of 33 and 18 water molecules. Then, we estimated the efficiency of each reaction using the reaction activation, desorption, and diffusion energies and derived kinetics with the Eyring equations. We find that radical–radical chemistry on surfaces is not as straightforward as usually assumed. In some cases, direct H-abstraction reactions can compete with radical–radical couplings, while in others they may contain large activation energies. Specifically, we found that (i) ethane, methylamine, and ethylene glycol are the only possible products of the relevant radical–radical reactions; (ii) glyoxal, methyl formate, glycolaldehyde, formamide, dimethyl ether, and ethanol formation is likely in competition with the respective H-abstraction products; and (iii) acetaldehyde and dimethyl peroxide do not seem to be likely grain-surface products.</description><identifier>ISSN: 0067-0049</identifier><identifier>EISSN: 1538-4365</identifier><identifier>DOI: 10.3847/1538-4365/ac480e</identifier><language>eng</language><publisher>Saskatoon: The American Astronomical Society</publisher><subject>Acetaldehyde ; Activation energy ; Astrochemistry ; Chemical reactions ; Computational methods ; Cosmic dust ; Coupling (molecular) ; Couplings ; Density functional theory ; Dimethyl ether ; Ethane ; Ethanol ; Ethylene glycol ; Fluid dynamics ; Hydrogen ; Ice formation ; Interstellar chemistry ; Interstellar dust ; Interstellar matter ; Interstellar molecules ; Methyl formate ; Molecule formation ; Organic chemistry ; Physical simulation ; Quantum mechanics ; Radicals ; Reaction rates ; Water chemistry</subject><ispartof>The Astrophysical journal. Supplement series, 2022-04, Vol.259 (2), p.39</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-1a53bdb88249a06b1b172b8226a021201ae53bb3905accc8164b301eaf14080a3</citedby><cites>FETCH-LOGICAL-c385t-1a53bdb88249a06b1b172b8226a021201ae53bb3905accc8164b301eaf14080a3</cites><orcidid>0000-0002-9637-4554 ; 0000-0002-2147-7735 ; 0000-0001-8886-9832 ; 0000-0001-5121-5683 ; 0000-0001-9664-6292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Enrique-Romero, Joan</creatorcontrib><creatorcontrib>Rimola, Albert</creatorcontrib><creatorcontrib>Ceccarelli, Cecilia</creatorcontrib><creatorcontrib>Ugliengo, Piero</creatorcontrib><creatorcontrib>Balucani, Nadia</creatorcontrib><creatorcontrib>Skouteris, Dimitrios</creatorcontrib><title>Quantum Mechanical Simulations of the Radical–Radical Chemistry on Icy Surfaces</title><title>The Astrophysical journal. Supplement series</title><addtitle>APJS</addtitle><addtitle>Astrophys. J. Suppl</addtitle><description>The formation of the interstellar complex organic molecules (iCOMs) is a hot topic in astrochemistry. One of the main paradigms trying to reproduce the observations postulates that iCOMs are formed on the ice mantles covering the interstellar dust grains as a result of radical–radical coupling reactions. We investigate iCOM formation on the icy surfaces by means of computational quantum mechanical methods. In particular, we study the coupling and direct hydrogen abstraction reactions involving the CH 3 + X systems (X = NH 2 , CH 3 , HCO, CH 3 O, CH 2 OH) and HCO + Y (Y = HCO, CH 3 O, CH 2 OH), plus the CH 2 OH + CH 2 OH and CH 3 O + CH 3 O systems. We computed the activation energy barriers of these reactions, as well as the binding energies of all the studied radicals, by means of density functional theory calculations on two ice water models, made of 33 and 18 water molecules. Then, we estimated the efficiency of each reaction using the reaction activation, desorption, and diffusion energies and derived kinetics with the Eyring equations. We find that radical–radical chemistry on surfaces is not as straightforward as usually assumed. In some cases, direct H-abstraction reactions can compete with radical–radical couplings, while in others they may contain large activation energies. Specifically, we found that (i) ethane, methylamine, and ethylene glycol are the only possible products of the relevant radical–radical reactions; (ii) glyoxal, methyl formate, glycolaldehyde, formamide, dimethyl ether, and ethanol formation is likely in competition with the respective H-abstraction products; and (iii) acetaldehyde and dimethyl peroxide do not seem to be likely grain-surface products.</description><subject>Acetaldehyde</subject><subject>Activation energy</subject><subject>Astrochemistry</subject><subject>Chemical reactions</subject><subject>Computational methods</subject><subject>Cosmic dust</subject><subject>Coupling (molecular)</subject><subject>Couplings</subject><subject>Density functional theory</subject><subject>Dimethyl ether</subject><subject>Ethane</subject><subject>Ethanol</subject><subject>Ethylene glycol</subject><subject>Fluid dynamics</subject><subject>Hydrogen</subject><subject>Ice formation</subject><subject>Interstellar chemistry</subject><subject>Interstellar dust</subject><subject>Interstellar matter</subject><subject>Interstellar molecules</subject><subject>Methyl formate</subject><subject>Molecule formation</subject><subject>Organic chemistry</subject><subject>Physical simulation</subject><subject>Quantum mechanics</subject><subject>Radicals</subject><subject>Reaction rates</subject><subject>Water chemistry</subject><issn>0067-0049</issn><issn>1538-4365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqWwM1piJfQc24kzogpKpSJUCrN1dh01VZMUOxm68Q68IU9ColQwMd3p7vvvpI-QawZ3XIl0wiRXkeCJnKAVCtwJGf2OTskIIEkjAJGdk4sQtgCQSp6NyHLZYtW0JX12doNVYXFHV0XZ7rAp6irQOqfNxtFXXPer78-vY0enG1cWofEHWld0bg901focrQuX5CzHXXBXxzom748Pb9OnaPEym0_vF5HlSjYRQ8nN2igViwwhMcywNDYqjhOEmMXA0HWA4RlItNYqlgjDgTnMmQAFyMfkZri79_VH60Kjt3Xrq-6ljhPBVJYKmXQUDJT1dQje5XrvixL9QTPQvTjdW9K9JT2I6yK3Q6So9383_8V_AN8mbtI</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Enrique-Romero, Joan</creator><creator>Rimola, Albert</creator><creator>Ceccarelli, Cecilia</creator><creator>Ugliengo, Piero</creator><creator>Balucani, Nadia</creator><creator>Skouteris, Dimitrios</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9637-4554</orcidid><orcidid>https://orcid.org/0000-0002-2147-7735</orcidid><orcidid>https://orcid.org/0000-0001-8886-9832</orcidid><orcidid>https://orcid.org/0000-0001-5121-5683</orcidid><orcidid>https://orcid.org/0000-0001-9664-6292</orcidid></search><sort><creationdate>20220401</creationdate><title>Quantum Mechanical Simulations of the Radical–Radical Chemistry on Icy Surfaces</title><author>Enrique-Romero, Joan ; Rimola, Albert ; Ceccarelli, Cecilia ; Ugliengo, Piero ; Balucani, Nadia ; Skouteris, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-1a53bdb88249a06b1b172b8226a021201ae53bb3905accc8164b301eaf14080a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetaldehyde</topic><topic>Activation energy</topic><topic>Astrochemistry</topic><topic>Chemical reactions</topic><topic>Computational methods</topic><topic>Cosmic dust</topic><topic>Coupling (molecular)</topic><topic>Couplings</topic><topic>Density functional theory</topic><topic>Dimethyl ether</topic><topic>Ethane</topic><topic>Ethanol</topic><topic>Ethylene glycol</topic><topic>Fluid dynamics</topic><topic>Hydrogen</topic><topic>Ice formation</topic><topic>Interstellar chemistry</topic><topic>Interstellar dust</topic><topic>Interstellar matter</topic><topic>Interstellar molecules</topic><topic>Methyl formate</topic><topic>Molecule formation</topic><topic>Organic chemistry</topic><topic>Physical simulation</topic><topic>Quantum mechanics</topic><topic>Radicals</topic><topic>Reaction rates</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Enrique-Romero, Joan</creatorcontrib><creatorcontrib>Rimola, Albert</creatorcontrib><creatorcontrib>Ceccarelli, Cecilia</creatorcontrib><creatorcontrib>Ugliengo, Piero</creatorcontrib><creatorcontrib>Balucani, Nadia</creatorcontrib><creatorcontrib>Skouteris, Dimitrios</creatorcontrib><collection>IOP Journals (Institute Of Physics)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal. Supplement series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Enrique-Romero, Joan</au><au>Rimola, Albert</au><au>Ceccarelli, Cecilia</au><au>Ugliengo, Piero</au><au>Balucani, Nadia</au><au>Skouteris, Dimitrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Mechanical Simulations of the Radical–Radical Chemistry on Icy Surfaces</atitle><jtitle>The Astrophysical journal. Supplement series</jtitle><stitle>APJS</stitle><addtitle>Astrophys. J. Suppl</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>259</volume><issue>2</issue><spage>39</spage><pages>39-</pages><issn>0067-0049</issn><eissn>1538-4365</eissn><abstract>The formation of the interstellar complex organic molecules (iCOMs) is a hot topic in astrochemistry. One of the main paradigms trying to reproduce the observations postulates that iCOMs are formed on the ice mantles covering the interstellar dust grains as a result of radical–radical coupling reactions. We investigate iCOM formation on the icy surfaces by means of computational quantum mechanical methods. In particular, we study the coupling and direct hydrogen abstraction reactions involving the CH 3 + X systems (X = NH 2 , CH 3 , HCO, CH 3 O, CH 2 OH) and HCO + Y (Y = HCO, CH 3 O, CH 2 OH), plus the CH 2 OH + CH 2 OH and CH 3 O + CH 3 O systems. We computed the activation energy barriers of these reactions, as well as the binding energies of all the studied radicals, by means of density functional theory calculations on two ice water models, made of 33 and 18 water molecules. Then, we estimated the efficiency of each reaction using the reaction activation, desorption, and diffusion energies and derived kinetics with the Eyring equations. We find that radical–radical chemistry on surfaces is not as straightforward as usually assumed. In some cases, direct H-abstraction reactions can compete with radical–radical couplings, while in others they may contain large activation energies. Specifically, we found that (i) ethane, methylamine, and ethylene glycol are the only possible products of the relevant radical–radical reactions; (ii) glyoxal, methyl formate, glycolaldehyde, formamide, dimethyl ether, and ethanol formation is likely in competition with the respective H-abstraction products; and (iii) acetaldehyde and dimethyl peroxide do not seem to be likely grain-surface products.</abstract><cop>Saskatoon</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4365/ac480e</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-9637-4554</orcidid><orcidid>https://orcid.org/0000-0002-2147-7735</orcidid><orcidid>https://orcid.org/0000-0001-8886-9832</orcidid><orcidid>https://orcid.org/0000-0001-5121-5683</orcidid><orcidid>https://orcid.org/0000-0001-9664-6292</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0067-0049 |
ispartof | The Astrophysical journal. Supplement series, 2022-04, Vol.259 (2), p.39 |
issn | 0067-0049 1538-4365 |
language | eng |
recordid | cdi_proquest_journals_2641897456 |
source | DOAJ Directory of Open Access Journals |
subjects | Acetaldehyde Activation energy Astrochemistry Chemical reactions Computational methods Cosmic dust Coupling (molecular) Couplings Density functional theory Dimethyl ether Ethane Ethanol Ethylene glycol Fluid dynamics Hydrogen Ice formation Interstellar chemistry Interstellar dust Interstellar matter Interstellar molecules Methyl formate Molecule formation Organic chemistry Physical simulation Quantum mechanics Radicals Reaction rates Water chemistry |
title | Quantum Mechanical Simulations of the Radical–Radical Chemistry on Icy Surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Mechanical%20Simulations%20of%20the%20Radical%E2%80%93Radical%20Chemistry%20on%20Icy%20Surfaces&rft.jtitle=The%20Astrophysical%20journal.%20Supplement%20series&rft.au=Enrique-Romero,%20Joan&rft.date=2022-04-01&rft.volume=259&rft.issue=2&rft.spage=39&rft.pages=39-&rft.issn=0067-0049&rft.eissn=1538-4365&rft_id=info:doi/10.3847/1538-4365/ac480e&rft_dat=%3Cproquest_cross%3E2641897456%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-1a53bdb88249a06b1b172b8226a021201ae53bb3905accc8164b301eaf14080a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2641897456&rft_id=info:pmid/&rfr_iscdi=true |