Loading…

Quantum Mechanical Simulations of the Radical–Radical Chemistry on Icy Surfaces

The formation of the interstellar complex organic molecules (iCOMs) is a hot topic in astrochemistry. One of the main paradigms trying to reproduce the observations postulates that iCOMs are formed on the ice mantles covering the interstellar dust grains as a result of radical–radical coupling react...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal. Supplement series 2022-04, Vol.259 (2), p.39
Main Authors: Enrique-Romero, Joan, Rimola, Albert, Ceccarelli, Cecilia, Ugliengo, Piero, Balucani, Nadia, Skouteris, Dimitrios
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-1a53bdb88249a06b1b172b8226a021201ae53bb3905accc8164b301eaf14080a3
cites cdi_FETCH-LOGICAL-c385t-1a53bdb88249a06b1b172b8226a021201ae53bb3905accc8164b301eaf14080a3
container_end_page
container_issue 2
container_start_page 39
container_title The Astrophysical journal. Supplement series
container_volume 259
creator Enrique-Romero, Joan
Rimola, Albert
Ceccarelli, Cecilia
Ugliengo, Piero
Balucani, Nadia
Skouteris, Dimitrios
description The formation of the interstellar complex organic molecules (iCOMs) is a hot topic in astrochemistry. One of the main paradigms trying to reproduce the observations postulates that iCOMs are formed on the ice mantles covering the interstellar dust grains as a result of radical–radical coupling reactions. We investigate iCOM formation on the icy surfaces by means of computational quantum mechanical methods. In particular, we study the coupling and direct hydrogen abstraction reactions involving the CH 3 + X systems (X = NH 2 , CH 3 , HCO, CH 3 O, CH 2 OH) and HCO + Y (Y = HCO, CH 3 O, CH 2 OH), plus the CH 2 OH + CH 2 OH and CH 3 O + CH 3 O systems. We computed the activation energy barriers of these reactions, as well as the binding energies of all the studied radicals, by means of density functional theory calculations on two ice water models, made of 33 and 18 water molecules. Then, we estimated the efficiency of each reaction using the reaction activation, desorption, and diffusion energies and derived kinetics with the Eyring equations. We find that radical–radical chemistry on surfaces is not as straightforward as usually assumed. In some cases, direct H-abstraction reactions can compete with radical–radical couplings, while in others they may contain large activation energies. Specifically, we found that (i) ethane, methylamine, and ethylene glycol are the only possible products of the relevant radical–radical reactions; (ii) glyoxal, methyl formate, glycolaldehyde, formamide, dimethyl ether, and ethanol formation is likely in competition with the respective H-abstraction products; and (iii) acetaldehyde and dimethyl peroxide do not seem to be likely grain-surface products.
doi_str_mv 10.3847/1538-4365/ac480e
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2641897456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641897456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-1a53bdb88249a06b1b172b8226a021201ae53bb3905accc8164b301eaf14080a3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqWwM1piJfQc24kzogpKpSJUCrN1dh01VZMUOxm68Q68IU9ColQwMd3p7vvvpI-QawZ3XIl0wiRXkeCJnKAVCtwJGf2OTskIIEkjAJGdk4sQtgCQSp6NyHLZYtW0JX12doNVYXFHV0XZ7rAp6irQOqfNxtFXXPer78-vY0enG1cWofEHWld0bg901focrQuX5CzHXXBXxzom748Pb9OnaPEym0_vF5HlSjYRQ8nN2igViwwhMcywNDYqjhOEmMXA0HWA4RlItNYqlgjDgTnMmQAFyMfkZri79_VH60Kjt3Xrq-6ljhPBVJYKmXQUDJT1dQje5XrvixL9QTPQvTjdW9K9JT2I6yK3Q6So9383_8V_AN8mbtI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641897456</pqid></control><display><type>article</type><title>Quantum Mechanical Simulations of the Radical–Radical Chemistry on Icy Surfaces</title><source>DOAJ Directory of Open Access Journals</source><creator>Enrique-Romero, Joan ; Rimola, Albert ; Ceccarelli, Cecilia ; Ugliengo, Piero ; Balucani, Nadia ; Skouteris, Dimitrios</creator><creatorcontrib>Enrique-Romero, Joan ; Rimola, Albert ; Ceccarelli, Cecilia ; Ugliengo, Piero ; Balucani, Nadia ; Skouteris, Dimitrios</creatorcontrib><description>The formation of the interstellar complex organic molecules (iCOMs) is a hot topic in astrochemistry. One of the main paradigms trying to reproduce the observations postulates that iCOMs are formed on the ice mantles covering the interstellar dust grains as a result of radical–radical coupling reactions. We investigate iCOM formation on the icy surfaces by means of computational quantum mechanical methods. In particular, we study the coupling and direct hydrogen abstraction reactions involving the CH 3 + X systems (X = NH 2 , CH 3 , HCO, CH 3 O, CH 2 OH) and HCO + Y (Y = HCO, CH 3 O, CH 2 OH), plus the CH 2 OH + CH 2 OH and CH 3 O + CH 3 O systems. We computed the activation energy barriers of these reactions, as well as the binding energies of all the studied radicals, by means of density functional theory calculations on two ice water models, made of 33 and 18 water molecules. Then, we estimated the efficiency of each reaction using the reaction activation, desorption, and diffusion energies and derived kinetics with the Eyring equations. We find that radical–radical chemistry on surfaces is not as straightforward as usually assumed. In some cases, direct H-abstraction reactions can compete with radical–radical couplings, while in others they may contain large activation energies. Specifically, we found that (i) ethane, methylamine, and ethylene glycol are the only possible products of the relevant radical–radical reactions; (ii) glyoxal, methyl formate, glycolaldehyde, formamide, dimethyl ether, and ethanol formation is likely in competition with the respective H-abstraction products; and (iii) acetaldehyde and dimethyl peroxide do not seem to be likely grain-surface products.</description><identifier>ISSN: 0067-0049</identifier><identifier>EISSN: 1538-4365</identifier><identifier>DOI: 10.3847/1538-4365/ac480e</identifier><language>eng</language><publisher>Saskatoon: The American Astronomical Society</publisher><subject>Acetaldehyde ; Activation energy ; Astrochemistry ; Chemical reactions ; Computational methods ; Cosmic dust ; Coupling (molecular) ; Couplings ; Density functional theory ; Dimethyl ether ; Ethane ; Ethanol ; Ethylene glycol ; Fluid dynamics ; Hydrogen ; Ice formation ; Interstellar chemistry ; Interstellar dust ; Interstellar matter ; Interstellar molecules ; Methyl formate ; Molecule formation ; Organic chemistry ; Physical simulation ; Quantum mechanics ; Radicals ; Reaction rates ; Water chemistry</subject><ispartof>The Astrophysical journal. Supplement series, 2022-04, Vol.259 (2), p.39</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-1a53bdb88249a06b1b172b8226a021201ae53bb3905accc8164b301eaf14080a3</citedby><cites>FETCH-LOGICAL-c385t-1a53bdb88249a06b1b172b8226a021201ae53bb3905accc8164b301eaf14080a3</cites><orcidid>0000-0002-9637-4554 ; 0000-0002-2147-7735 ; 0000-0001-8886-9832 ; 0000-0001-5121-5683 ; 0000-0001-9664-6292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Enrique-Romero, Joan</creatorcontrib><creatorcontrib>Rimola, Albert</creatorcontrib><creatorcontrib>Ceccarelli, Cecilia</creatorcontrib><creatorcontrib>Ugliengo, Piero</creatorcontrib><creatorcontrib>Balucani, Nadia</creatorcontrib><creatorcontrib>Skouteris, Dimitrios</creatorcontrib><title>Quantum Mechanical Simulations of the Radical–Radical Chemistry on Icy Surfaces</title><title>The Astrophysical journal. Supplement series</title><addtitle>APJS</addtitle><addtitle>Astrophys. J. Suppl</addtitle><description>The formation of the interstellar complex organic molecules (iCOMs) is a hot topic in astrochemistry. One of the main paradigms trying to reproduce the observations postulates that iCOMs are formed on the ice mantles covering the interstellar dust grains as a result of radical–radical coupling reactions. We investigate iCOM formation on the icy surfaces by means of computational quantum mechanical methods. In particular, we study the coupling and direct hydrogen abstraction reactions involving the CH 3 + X systems (X = NH 2 , CH 3 , HCO, CH 3 O, CH 2 OH) and HCO + Y (Y = HCO, CH 3 O, CH 2 OH), plus the CH 2 OH + CH 2 OH and CH 3 O + CH 3 O systems. We computed the activation energy barriers of these reactions, as well as the binding energies of all the studied radicals, by means of density functional theory calculations on two ice water models, made of 33 and 18 water molecules. Then, we estimated the efficiency of each reaction using the reaction activation, desorption, and diffusion energies and derived kinetics with the Eyring equations. We find that radical–radical chemistry on surfaces is not as straightforward as usually assumed. In some cases, direct H-abstraction reactions can compete with radical–radical couplings, while in others they may contain large activation energies. Specifically, we found that (i) ethane, methylamine, and ethylene glycol are the only possible products of the relevant radical–radical reactions; (ii) glyoxal, methyl formate, glycolaldehyde, formamide, dimethyl ether, and ethanol formation is likely in competition with the respective H-abstraction products; and (iii) acetaldehyde and dimethyl peroxide do not seem to be likely grain-surface products.</description><subject>Acetaldehyde</subject><subject>Activation energy</subject><subject>Astrochemistry</subject><subject>Chemical reactions</subject><subject>Computational methods</subject><subject>Cosmic dust</subject><subject>Coupling (molecular)</subject><subject>Couplings</subject><subject>Density functional theory</subject><subject>Dimethyl ether</subject><subject>Ethane</subject><subject>Ethanol</subject><subject>Ethylene glycol</subject><subject>Fluid dynamics</subject><subject>Hydrogen</subject><subject>Ice formation</subject><subject>Interstellar chemistry</subject><subject>Interstellar dust</subject><subject>Interstellar matter</subject><subject>Interstellar molecules</subject><subject>Methyl formate</subject><subject>Molecule formation</subject><subject>Organic chemistry</subject><subject>Physical simulation</subject><subject>Quantum mechanics</subject><subject>Radicals</subject><subject>Reaction rates</subject><subject>Water chemistry</subject><issn>0067-0049</issn><issn>1538-4365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqWwM1piJfQc24kzogpKpSJUCrN1dh01VZMUOxm68Q68IU9ColQwMd3p7vvvpI-QawZ3XIl0wiRXkeCJnKAVCtwJGf2OTskIIEkjAJGdk4sQtgCQSp6NyHLZYtW0JX12doNVYXFHV0XZ7rAp6irQOqfNxtFXXPer78-vY0enG1cWofEHWld0bg901focrQuX5CzHXXBXxzom748Pb9OnaPEym0_vF5HlSjYRQ8nN2igViwwhMcywNDYqjhOEmMXA0HWA4RlItNYqlgjDgTnMmQAFyMfkZri79_VH60Kjt3Xrq-6ljhPBVJYKmXQUDJT1dQje5XrvixL9QTPQvTjdW9K9JT2I6yK3Q6So9383_8V_AN8mbtI</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Enrique-Romero, Joan</creator><creator>Rimola, Albert</creator><creator>Ceccarelli, Cecilia</creator><creator>Ugliengo, Piero</creator><creator>Balucani, Nadia</creator><creator>Skouteris, Dimitrios</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9637-4554</orcidid><orcidid>https://orcid.org/0000-0002-2147-7735</orcidid><orcidid>https://orcid.org/0000-0001-8886-9832</orcidid><orcidid>https://orcid.org/0000-0001-5121-5683</orcidid><orcidid>https://orcid.org/0000-0001-9664-6292</orcidid></search><sort><creationdate>20220401</creationdate><title>Quantum Mechanical Simulations of the Radical–Radical Chemistry on Icy Surfaces</title><author>Enrique-Romero, Joan ; Rimola, Albert ; Ceccarelli, Cecilia ; Ugliengo, Piero ; Balucani, Nadia ; Skouteris, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-1a53bdb88249a06b1b172b8226a021201ae53bb3905accc8164b301eaf14080a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetaldehyde</topic><topic>Activation energy</topic><topic>Astrochemistry</topic><topic>Chemical reactions</topic><topic>Computational methods</topic><topic>Cosmic dust</topic><topic>Coupling (molecular)</topic><topic>Couplings</topic><topic>Density functional theory</topic><topic>Dimethyl ether</topic><topic>Ethane</topic><topic>Ethanol</topic><topic>Ethylene glycol</topic><topic>Fluid dynamics</topic><topic>Hydrogen</topic><topic>Ice formation</topic><topic>Interstellar chemistry</topic><topic>Interstellar dust</topic><topic>Interstellar matter</topic><topic>Interstellar molecules</topic><topic>Methyl formate</topic><topic>Molecule formation</topic><topic>Organic chemistry</topic><topic>Physical simulation</topic><topic>Quantum mechanics</topic><topic>Radicals</topic><topic>Reaction rates</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Enrique-Romero, Joan</creatorcontrib><creatorcontrib>Rimola, Albert</creatorcontrib><creatorcontrib>Ceccarelli, Cecilia</creatorcontrib><creatorcontrib>Ugliengo, Piero</creatorcontrib><creatorcontrib>Balucani, Nadia</creatorcontrib><creatorcontrib>Skouteris, Dimitrios</creatorcontrib><collection>IOP Journals (Institute Of Physics)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal. Supplement series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Enrique-Romero, Joan</au><au>Rimola, Albert</au><au>Ceccarelli, Cecilia</au><au>Ugliengo, Piero</au><au>Balucani, Nadia</au><au>Skouteris, Dimitrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Mechanical Simulations of the Radical–Radical Chemistry on Icy Surfaces</atitle><jtitle>The Astrophysical journal. Supplement series</jtitle><stitle>APJS</stitle><addtitle>Astrophys. J. Suppl</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>259</volume><issue>2</issue><spage>39</spage><pages>39-</pages><issn>0067-0049</issn><eissn>1538-4365</eissn><abstract>The formation of the interstellar complex organic molecules (iCOMs) is a hot topic in astrochemistry. One of the main paradigms trying to reproduce the observations postulates that iCOMs are formed on the ice mantles covering the interstellar dust grains as a result of radical–radical coupling reactions. We investigate iCOM formation on the icy surfaces by means of computational quantum mechanical methods. In particular, we study the coupling and direct hydrogen abstraction reactions involving the CH 3 + X systems (X = NH 2 , CH 3 , HCO, CH 3 O, CH 2 OH) and HCO + Y (Y = HCO, CH 3 O, CH 2 OH), plus the CH 2 OH + CH 2 OH and CH 3 O + CH 3 O systems. We computed the activation energy barriers of these reactions, as well as the binding energies of all the studied radicals, by means of density functional theory calculations on two ice water models, made of 33 and 18 water molecules. Then, we estimated the efficiency of each reaction using the reaction activation, desorption, and diffusion energies and derived kinetics with the Eyring equations. We find that radical–radical chemistry on surfaces is not as straightforward as usually assumed. In some cases, direct H-abstraction reactions can compete with radical–radical couplings, while in others they may contain large activation energies. Specifically, we found that (i) ethane, methylamine, and ethylene glycol are the only possible products of the relevant radical–radical reactions; (ii) glyoxal, methyl formate, glycolaldehyde, formamide, dimethyl ether, and ethanol formation is likely in competition with the respective H-abstraction products; and (iii) acetaldehyde and dimethyl peroxide do not seem to be likely grain-surface products.</abstract><cop>Saskatoon</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4365/ac480e</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-9637-4554</orcidid><orcidid>https://orcid.org/0000-0002-2147-7735</orcidid><orcidid>https://orcid.org/0000-0001-8886-9832</orcidid><orcidid>https://orcid.org/0000-0001-5121-5683</orcidid><orcidid>https://orcid.org/0000-0001-9664-6292</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0067-0049
ispartof The Astrophysical journal. Supplement series, 2022-04, Vol.259 (2), p.39
issn 0067-0049
1538-4365
language eng
recordid cdi_proquest_journals_2641897456
source DOAJ Directory of Open Access Journals
subjects Acetaldehyde
Activation energy
Astrochemistry
Chemical reactions
Computational methods
Cosmic dust
Coupling (molecular)
Couplings
Density functional theory
Dimethyl ether
Ethane
Ethanol
Ethylene glycol
Fluid dynamics
Hydrogen
Ice formation
Interstellar chemistry
Interstellar dust
Interstellar matter
Interstellar molecules
Methyl formate
Molecule formation
Organic chemistry
Physical simulation
Quantum mechanics
Radicals
Reaction rates
Water chemistry
title Quantum Mechanical Simulations of the Radical–Radical Chemistry on Icy Surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Mechanical%20Simulations%20of%20the%20Radical%E2%80%93Radical%20Chemistry%20on%20Icy%20Surfaces&rft.jtitle=The%20Astrophysical%20journal.%20Supplement%20series&rft.au=Enrique-Romero,%20Joan&rft.date=2022-04-01&rft.volume=259&rft.issue=2&rft.spage=39&rft.pages=39-&rft.issn=0067-0049&rft.eissn=1538-4365&rft_id=info:doi/10.3847/1538-4365/ac480e&rft_dat=%3Cproquest_cross%3E2641897456%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-1a53bdb88249a06b1b172b8226a021201ae53bb3905accc8164b301eaf14080a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2641897456&rft_id=info:pmid/&rfr_iscdi=true