Loading…
Few-Shot Domain Adaptation via Mixup Optimal Transport
Unsupervised domain adaptation aims to learn a classification model for the target domain without any labeled samples by transferring the knowledge from the source domain with sufficient labeled samples. The source and the target domains usually share the same label space but are with different data...
Saved in:
Published in: | IEEE transactions on image processing 2022-01, Vol.31, p.2518-2528 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-efd1aa9612697d13577462c3e7ee67702460e55a0f59409354867a42d1cd3c933 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-efd1aa9612697d13577462c3e7ee67702460e55a0f59409354867a42d1cd3c933 |
container_end_page | 2528 |
container_issue | |
container_start_page | 2518 |
container_title | IEEE transactions on image processing |
container_volume | 31 |
creator | Xu, Bingrong Zeng, Zhigang Lian, Cheng Ding, Zhengming |
description | Unsupervised domain adaptation aims to learn a classification model for the target domain without any labeled samples by transferring the knowledge from the source domain with sufficient labeled samples. The source and the target domains usually share the same label space but are with different data distributions. In this paper, we consider a more difficult but insufficient-explored problem named as few-shot domain adaptation, where a classifier should generalize well to the target domain given only a small number of examples in the source domain. In such a problem, we recast the link between the source and target samples by a mixup optimal transport model. The mixup mechanism is integrated into optimal transport to perform the few-shot adaptation by learning the cross-domain alignment matrix and domain-invariant classifier simultaneously to augment the source distribution and align the two probability distributions. Moreover, spectral shrinkage regularization is deployed to improve the transferability and discriminability of the mixup optimal transport model by utilizing all singular eigenvectors. Experiments conducted on several domain adaptation tasks demonstrate the effectiveness of our proposed model dealing with the few-shot domain adaptation problem compared with state-of-the-art methods. |
doi_str_mv | 10.1109/TIP.2022.3157139 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2641996936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9733175</ieee_id><sourcerecordid>2641996936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-efd1aa9612697d13577462c3e7ee67702460e55a0f59409354867a42d1cd3c933</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRrFbvgiABL15Sd_YzeyzVaqFSwXpe1mSDKWk27iZ-_Hu3tPbgaQbmeYeZB6ELwCMArG6Xs-cRwYSMKHAJVB2gE1AMUowZOYw95jKVwNQAnYawwhgYB3GMBpQTyTPITpCY2q_05d11yZ1bm6pJxoVpO9NVrkk-K5M8Vd99myzarlqbOll604TW-e4MHZWmDvZ8V4fodXq_nDym88XDbDKepzllskttWYAxSgARShZAuZRMkJxaaa2QEhMmsOXc4JIrhhXlLBPSMFJAXtBcUTpEN9u9rXcfvQ2dXlcht3VtGuv6oImgmSQyExv0-h-6cr1v4nWRYqCUUFRECm-p3LsQvC116-Nr_kcD1hunOjrVG6d65zRGrnaL-7e1LfaBP4kRuNwClbV2P1aSUpCc_gICUHcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641996936</pqid></control><display><type>article</type><title>Few-Shot Domain Adaptation via Mixup Optimal Transport</title><source>IEEE Xplore (Online service)</source><creator>Xu, Bingrong ; Zeng, Zhigang ; Lian, Cheng ; Ding, Zhengming</creator><creatorcontrib>Xu, Bingrong ; Zeng, Zhigang ; Lian, Cheng ; Ding, Zhengming</creatorcontrib><description>Unsupervised domain adaptation aims to learn a classification model for the target domain without any labeled samples by transferring the knowledge from the source domain with sufficient labeled samples. The source and the target domains usually share the same label space but are with different data distributions. In this paper, we consider a more difficult but insufficient-explored problem named as few-shot domain adaptation, where a classifier should generalize well to the target domain given only a small number of examples in the source domain. In such a problem, we recast the link between the source and target samples by a mixup optimal transport model. The mixup mechanism is integrated into optimal transport to perform the few-shot adaptation by learning the cross-domain alignment matrix and domain-invariant classifier simultaneously to augment the source distribution and align the two probability distributions. Moreover, spectral shrinkage regularization is deployed to improve the transferability and discriminability of the mixup optimal transport model by utilizing all singular eigenvectors. Experiments conducted on several domain adaptation tasks demonstrate the effectiveness of our proposed model dealing with the few-shot domain adaptation problem compared with state-of-the-art methods.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2022.3157139</identifier><identifier>PMID: 35275818</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation ; Adaptation models ; Automation ; Classifiers ; Couplings ; data augmentation ; Deep learning ; domain adaptation ; Domains ; Eigenvectors ; Feature extraction ; Few-shot learning ; Numerical models ; optimal transport ; Regularization ; Training</subject><ispartof>IEEE transactions on image processing, 2022-01, Vol.31, p.2518-2528</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-efd1aa9612697d13577462c3e7ee67702460e55a0f59409354867a42d1cd3c933</citedby><cites>FETCH-LOGICAL-c347t-efd1aa9612697d13577462c3e7ee67702460e55a0f59409354867a42d1cd3c933</cites><orcidid>0000-0003-4587-3588 ; 0000-0003-1568-3855 ; 0000-0002-6994-5278 ; 0000-0001-6929-1545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9733175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35275818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Bingrong</creatorcontrib><creatorcontrib>Zeng, Zhigang</creatorcontrib><creatorcontrib>Lian, Cheng</creatorcontrib><creatorcontrib>Ding, Zhengming</creatorcontrib><title>Few-Shot Domain Adaptation via Mixup Optimal Transport</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Unsupervised domain adaptation aims to learn a classification model for the target domain without any labeled samples by transferring the knowledge from the source domain with sufficient labeled samples. The source and the target domains usually share the same label space but are with different data distributions. In this paper, we consider a more difficult but insufficient-explored problem named as few-shot domain adaptation, where a classifier should generalize well to the target domain given only a small number of examples in the source domain. In such a problem, we recast the link between the source and target samples by a mixup optimal transport model. The mixup mechanism is integrated into optimal transport to perform the few-shot adaptation by learning the cross-domain alignment matrix and domain-invariant classifier simultaneously to augment the source distribution and align the two probability distributions. Moreover, spectral shrinkage regularization is deployed to improve the transferability and discriminability of the mixup optimal transport model by utilizing all singular eigenvectors. Experiments conducted on several domain adaptation tasks demonstrate the effectiveness of our proposed model dealing with the few-shot domain adaptation problem compared with state-of-the-art methods.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Automation</subject><subject>Classifiers</subject><subject>Couplings</subject><subject>data augmentation</subject><subject>Deep learning</subject><subject>domain adaptation</subject><subject>Domains</subject><subject>Eigenvectors</subject><subject>Feature extraction</subject><subject>Few-shot learning</subject><subject>Numerical models</subject><subject>optimal transport</subject><subject>Regularization</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRrFbvgiABL15Sd_YzeyzVaqFSwXpe1mSDKWk27iZ-_Hu3tPbgaQbmeYeZB6ELwCMArG6Xs-cRwYSMKHAJVB2gE1AMUowZOYw95jKVwNQAnYawwhgYB3GMBpQTyTPITpCY2q_05d11yZ1bm6pJxoVpO9NVrkk-K5M8Vd99myzarlqbOll604TW-e4MHZWmDvZ8V4fodXq_nDym88XDbDKepzllskttWYAxSgARShZAuZRMkJxaaa2QEhMmsOXc4JIrhhXlLBPSMFJAXtBcUTpEN9u9rXcfvQ2dXlcht3VtGuv6oImgmSQyExv0-h-6cr1v4nWRYqCUUFRECm-p3LsQvC116-Nr_kcD1hunOjrVG6d65zRGrnaL-7e1LfaBP4kRuNwClbV2P1aSUpCc_gICUHcw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Xu, Bingrong</creator><creator>Zeng, Zhigang</creator><creator>Lian, Cheng</creator><creator>Ding, Zhengming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4587-3588</orcidid><orcidid>https://orcid.org/0000-0003-1568-3855</orcidid><orcidid>https://orcid.org/0000-0002-6994-5278</orcidid><orcidid>https://orcid.org/0000-0001-6929-1545</orcidid></search><sort><creationdate>20220101</creationdate><title>Few-Shot Domain Adaptation via Mixup Optimal Transport</title><author>Xu, Bingrong ; Zeng, Zhigang ; Lian, Cheng ; Ding, Zhengming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-efd1aa9612697d13577462c3e7ee67702460e55a0f59409354867a42d1cd3c933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Automation</topic><topic>Classifiers</topic><topic>Couplings</topic><topic>data augmentation</topic><topic>Deep learning</topic><topic>domain adaptation</topic><topic>Domains</topic><topic>Eigenvectors</topic><topic>Feature extraction</topic><topic>Few-shot learning</topic><topic>Numerical models</topic><topic>optimal transport</topic><topic>Regularization</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Bingrong</creatorcontrib><creatorcontrib>Zeng, Zhigang</creatorcontrib><creatorcontrib>Lian, Cheng</creatorcontrib><creatorcontrib>Ding, Zhengming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Bingrong</au><au>Zeng, Zhigang</au><au>Lian, Cheng</au><au>Ding, Zhengming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Few-Shot Domain Adaptation via Mixup Optimal Transport</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>31</volume><spage>2518</spage><epage>2528</epage><pages>2518-2528</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Unsupervised domain adaptation aims to learn a classification model for the target domain without any labeled samples by transferring the knowledge from the source domain with sufficient labeled samples. The source and the target domains usually share the same label space but are with different data distributions. In this paper, we consider a more difficult but insufficient-explored problem named as few-shot domain adaptation, where a classifier should generalize well to the target domain given only a small number of examples in the source domain. In such a problem, we recast the link between the source and target samples by a mixup optimal transport model. The mixup mechanism is integrated into optimal transport to perform the few-shot adaptation by learning the cross-domain alignment matrix and domain-invariant classifier simultaneously to augment the source distribution and align the two probability distributions. Moreover, spectral shrinkage regularization is deployed to improve the transferability and discriminability of the mixup optimal transport model by utilizing all singular eigenvectors. Experiments conducted on several domain adaptation tasks demonstrate the effectiveness of our proposed model dealing with the few-shot domain adaptation problem compared with state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35275818</pmid><doi>10.1109/TIP.2022.3157139</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4587-3588</orcidid><orcidid>https://orcid.org/0000-0003-1568-3855</orcidid><orcidid>https://orcid.org/0000-0002-6994-5278</orcidid><orcidid>https://orcid.org/0000-0001-6929-1545</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2022-01, Vol.31, p.2518-2528 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_2641996936 |
source | IEEE Xplore (Online service) |
subjects | Adaptation Adaptation models Automation Classifiers Couplings data augmentation Deep learning domain adaptation Domains Eigenvectors Feature extraction Few-shot learning Numerical models optimal transport Regularization Training |
title | Few-Shot Domain Adaptation via Mixup Optimal Transport |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Few-Shot%20Domain%20Adaptation%20via%20Mixup%20Optimal%20Transport&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Xu,%20Bingrong&rft.date=2022-01-01&rft.volume=31&rft.spage=2518&rft.epage=2528&rft.pages=2518-2528&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2022.3157139&rft_dat=%3Cproquest_cross%3E2641996936%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-efd1aa9612697d13577462c3e7ee67702460e55a0f59409354867a42d1cd3c933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2641996936&rft_id=info:pmid/35275818&rft_ieee_id=9733175&rfr_iscdi=true |