Loading…

Few-Shot Domain Adaptation via Mixup Optimal Transport

Unsupervised domain adaptation aims to learn a classification model for the target domain without any labeled samples by transferring the knowledge from the source domain with sufficient labeled samples. The source and the target domains usually share the same label space but are with different data...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2022-01, Vol.31, p.2518-2528
Main Authors: Xu, Bingrong, Zeng, Zhigang, Lian, Cheng, Ding, Zhengming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-efd1aa9612697d13577462c3e7ee67702460e55a0f59409354867a42d1cd3c933
cites cdi_FETCH-LOGICAL-c347t-efd1aa9612697d13577462c3e7ee67702460e55a0f59409354867a42d1cd3c933
container_end_page 2528
container_issue
container_start_page 2518
container_title IEEE transactions on image processing
container_volume 31
creator Xu, Bingrong
Zeng, Zhigang
Lian, Cheng
Ding, Zhengming
description Unsupervised domain adaptation aims to learn a classification model for the target domain without any labeled samples by transferring the knowledge from the source domain with sufficient labeled samples. The source and the target domains usually share the same label space but are with different data distributions. In this paper, we consider a more difficult but insufficient-explored problem named as few-shot domain adaptation, where a classifier should generalize well to the target domain given only a small number of examples in the source domain. In such a problem, we recast the link between the source and target samples by a mixup optimal transport model. The mixup mechanism is integrated into optimal transport to perform the few-shot adaptation by learning the cross-domain alignment matrix and domain-invariant classifier simultaneously to augment the source distribution and align the two probability distributions. Moreover, spectral shrinkage regularization is deployed to improve the transferability and discriminability of the mixup optimal transport model by utilizing all singular eigenvectors. Experiments conducted on several domain adaptation tasks demonstrate the effectiveness of our proposed model dealing with the few-shot domain adaptation problem compared with state-of-the-art methods.
doi_str_mv 10.1109/TIP.2022.3157139
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2641996936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9733175</ieee_id><sourcerecordid>2641996936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-efd1aa9612697d13577462c3e7ee67702460e55a0f59409354867a42d1cd3c933</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRrFbvgiABL15Sd_YzeyzVaqFSwXpe1mSDKWk27iZ-_Hu3tPbgaQbmeYeZB6ELwCMArG6Xs-cRwYSMKHAJVB2gE1AMUowZOYw95jKVwNQAnYawwhgYB3GMBpQTyTPITpCY2q_05d11yZ1bm6pJxoVpO9NVrkk-K5M8Vd99myzarlqbOll604TW-e4MHZWmDvZ8V4fodXq_nDym88XDbDKepzllskttWYAxSgARShZAuZRMkJxaaa2QEhMmsOXc4JIrhhXlLBPSMFJAXtBcUTpEN9u9rXcfvQ2dXlcht3VtGuv6oImgmSQyExv0-h-6cr1v4nWRYqCUUFRECm-p3LsQvC116-Nr_kcD1hunOjrVG6d65zRGrnaL-7e1LfaBP4kRuNwClbV2P1aSUpCc_gICUHcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641996936</pqid></control><display><type>article</type><title>Few-Shot Domain Adaptation via Mixup Optimal Transport</title><source>IEEE Xplore (Online service)</source><creator>Xu, Bingrong ; Zeng, Zhigang ; Lian, Cheng ; Ding, Zhengming</creator><creatorcontrib>Xu, Bingrong ; Zeng, Zhigang ; Lian, Cheng ; Ding, Zhengming</creatorcontrib><description>Unsupervised domain adaptation aims to learn a classification model for the target domain without any labeled samples by transferring the knowledge from the source domain with sufficient labeled samples. The source and the target domains usually share the same label space but are with different data distributions. In this paper, we consider a more difficult but insufficient-explored problem named as few-shot domain adaptation, where a classifier should generalize well to the target domain given only a small number of examples in the source domain. In such a problem, we recast the link between the source and target samples by a mixup optimal transport model. The mixup mechanism is integrated into optimal transport to perform the few-shot adaptation by learning the cross-domain alignment matrix and domain-invariant classifier simultaneously to augment the source distribution and align the two probability distributions. Moreover, spectral shrinkage regularization is deployed to improve the transferability and discriminability of the mixup optimal transport model by utilizing all singular eigenvectors. Experiments conducted on several domain adaptation tasks demonstrate the effectiveness of our proposed model dealing with the few-shot domain adaptation problem compared with state-of-the-art methods.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2022.3157139</identifier><identifier>PMID: 35275818</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation ; Adaptation models ; Automation ; Classifiers ; Couplings ; data augmentation ; Deep learning ; domain adaptation ; Domains ; Eigenvectors ; Feature extraction ; Few-shot learning ; Numerical models ; optimal transport ; Regularization ; Training</subject><ispartof>IEEE transactions on image processing, 2022-01, Vol.31, p.2518-2528</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-efd1aa9612697d13577462c3e7ee67702460e55a0f59409354867a42d1cd3c933</citedby><cites>FETCH-LOGICAL-c347t-efd1aa9612697d13577462c3e7ee67702460e55a0f59409354867a42d1cd3c933</cites><orcidid>0000-0003-4587-3588 ; 0000-0003-1568-3855 ; 0000-0002-6994-5278 ; 0000-0001-6929-1545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9733175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35275818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Bingrong</creatorcontrib><creatorcontrib>Zeng, Zhigang</creatorcontrib><creatorcontrib>Lian, Cheng</creatorcontrib><creatorcontrib>Ding, Zhengming</creatorcontrib><title>Few-Shot Domain Adaptation via Mixup Optimal Transport</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Unsupervised domain adaptation aims to learn a classification model for the target domain without any labeled samples by transferring the knowledge from the source domain with sufficient labeled samples. The source and the target domains usually share the same label space but are with different data distributions. In this paper, we consider a more difficult but insufficient-explored problem named as few-shot domain adaptation, where a classifier should generalize well to the target domain given only a small number of examples in the source domain. In such a problem, we recast the link between the source and target samples by a mixup optimal transport model. The mixup mechanism is integrated into optimal transport to perform the few-shot adaptation by learning the cross-domain alignment matrix and domain-invariant classifier simultaneously to augment the source distribution and align the two probability distributions. Moreover, spectral shrinkage regularization is deployed to improve the transferability and discriminability of the mixup optimal transport model by utilizing all singular eigenvectors. Experiments conducted on several domain adaptation tasks demonstrate the effectiveness of our proposed model dealing with the few-shot domain adaptation problem compared with state-of-the-art methods.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Automation</subject><subject>Classifiers</subject><subject>Couplings</subject><subject>data augmentation</subject><subject>Deep learning</subject><subject>domain adaptation</subject><subject>Domains</subject><subject>Eigenvectors</subject><subject>Feature extraction</subject><subject>Few-shot learning</subject><subject>Numerical models</subject><subject>optimal transport</subject><subject>Regularization</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRrFbvgiABL15Sd_YzeyzVaqFSwXpe1mSDKWk27iZ-_Hu3tPbgaQbmeYeZB6ELwCMArG6Xs-cRwYSMKHAJVB2gE1AMUowZOYw95jKVwNQAnYawwhgYB3GMBpQTyTPITpCY2q_05d11yZ1bm6pJxoVpO9NVrkk-K5M8Vd99myzarlqbOll604TW-e4MHZWmDvZ8V4fodXq_nDym88XDbDKepzllskttWYAxSgARShZAuZRMkJxaaa2QEhMmsOXc4JIrhhXlLBPSMFJAXtBcUTpEN9u9rXcfvQ2dXlcht3VtGuv6oImgmSQyExv0-h-6cr1v4nWRYqCUUFRECm-p3LsQvC116-Nr_kcD1hunOjrVG6d65zRGrnaL-7e1LfaBP4kRuNwClbV2P1aSUpCc_gICUHcw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Xu, Bingrong</creator><creator>Zeng, Zhigang</creator><creator>Lian, Cheng</creator><creator>Ding, Zhengming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4587-3588</orcidid><orcidid>https://orcid.org/0000-0003-1568-3855</orcidid><orcidid>https://orcid.org/0000-0002-6994-5278</orcidid><orcidid>https://orcid.org/0000-0001-6929-1545</orcidid></search><sort><creationdate>20220101</creationdate><title>Few-Shot Domain Adaptation via Mixup Optimal Transport</title><author>Xu, Bingrong ; Zeng, Zhigang ; Lian, Cheng ; Ding, Zhengming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-efd1aa9612697d13577462c3e7ee67702460e55a0f59409354867a42d1cd3c933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Automation</topic><topic>Classifiers</topic><topic>Couplings</topic><topic>data augmentation</topic><topic>Deep learning</topic><topic>domain adaptation</topic><topic>Domains</topic><topic>Eigenvectors</topic><topic>Feature extraction</topic><topic>Few-shot learning</topic><topic>Numerical models</topic><topic>optimal transport</topic><topic>Regularization</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Bingrong</creatorcontrib><creatorcontrib>Zeng, Zhigang</creatorcontrib><creatorcontrib>Lian, Cheng</creatorcontrib><creatorcontrib>Ding, Zhengming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Bingrong</au><au>Zeng, Zhigang</au><au>Lian, Cheng</au><au>Ding, Zhengming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Few-Shot Domain Adaptation via Mixup Optimal Transport</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>31</volume><spage>2518</spage><epage>2528</epage><pages>2518-2528</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Unsupervised domain adaptation aims to learn a classification model for the target domain without any labeled samples by transferring the knowledge from the source domain with sufficient labeled samples. The source and the target domains usually share the same label space but are with different data distributions. In this paper, we consider a more difficult but insufficient-explored problem named as few-shot domain adaptation, where a classifier should generalize well to the target domain given only a small number of examples in the source domain. In such a problem, we recast the link between the source and target samples by a mixup optimal transport model. The mixup mechanism is integrated into optimal transport to perform the few-shot adaptation by learning the cross-domain alignment matrix and domain-invariant classifier simultaneously to augment the source distribution and align the two probability distributions. Moreover, spectral shrinkage regularization is deployed to improve the transferability and discriminability of the mixup optimal transport model by utilizing all singular eigenvectors. Experiments conducted on several domain adaptation tasks demonstrate the effectiveness of our proposed model dealing with the few-shot domain adaptation problem compared with state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35275818</pmid><doi>10.1109/TIP.2022.3157139</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4587-3588</orcidid><orcidid>https://orcid.org/0000-0003-1568-3855</orcidid><orcidid>https://orcid.org/0000-0002-6994-5278</orcidid><orcidid>https://orcid.org/0000-0001-6929-1545</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2022-01, Vol.31, p.2518-2528
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_journals_2641996936
source IEEE Xplore (Online service)
subjects Adaptation
Adaptation models
Automation
Classifiers
Couplings
data augmentation
Deep learning
domain adaptation
Domains
Eigenvectors
Feature extraction
Few-shot learning
Numerical models
optimal transport
Regularization
Training
title Few-Shot Domain Adaptation via Mixup Optimal Transport
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Few-Shot%20Domain%20Adaptation%20via%20Mixup%20Optimal%20Transport&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Xu,%20Bingrong&rft.date=2022-01-01&rft.volume=31&rft.spage=2518&rft.epage=2528&rft.pages=2518-2528&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2022.3157139&rft_dat=%3Cproquest_cross%3E2641996936%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-efd1aa9612697d13577462c3e7ee67702460e55a0f59409354867a42d1cd3c933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2641996936&rft_id=info:pmid/35275818&rft_ieee_id=9733175&rfr_iscdi=true