Loading…
Analysis of Disfluencies for automatic detection of Mild Cognitive Impartment: a deep learning approach
The so-called Mild Cognitive Impairment (MCI) or cognitive loss appears in a previous stage before Alzheimer's Disease (AD), but it does not seem sufficiently severe to interfere in independent abilities of daily life, so it usually does not receive an appropriate diagnosis. Its detection is a...
Saved in:
Published in: | arXiv.org 2022-03 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lopez-de-Ipiña, Karmele Unai Martinez de Lizarduy Calvo, Pilar Beita, Blanca García-Melero, Joseba Ecay-Torres, Miriam Estanga, Ainara Faundez-Zanuy, Marcos |
description | The so-called Mild Cognitive Impairment (MCI) or cognitive loss appears in a previous stage before Alzheimer's Disease (AD), but it does not seem sufficiently severe to interfere in independent abilities of daily life, so it usually does not receive an appropriate diagnosis. Its detection is a challenging issue to be addressed by medical specialists. This work presents a novel proposal based on automatic analysis of speech and disfluencies aimed at supporting MCI diagnosis. The approach includes deep learning by means of Convolutional Neural Networks (CNN) and non-linear multifeature modelling. Moreover, to select the most relevant features non-parametric Mann-Whitney U-testt and Support Vector Machine Attribute (SVM) evaluation are used. |
doi_str_mv | 10.48550/arxiv.2203.11606 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2642082660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642082660</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-e1a67a787f955068df5c36d5c122b2647d770131a30bdedf6aa09633dbac43a73</originalsourceid><addsrcrecordid>eNotj81OAjEYRRsTEwnyAO6auB5sv07bwR3BH0gwbtiTj_5gydCO0w7Rt3eMru7m3HtzCLnjbF43UrIH7L_CZQ7AxJxzxdQVmYAQvGpqgBsyy_nEGAOlQUoxIcdlxPY7h0yTp08h-3Zw0QSXqU89xaGkM5ZgqHXFmRJS_OXeQmvpKh1jKOHi6ObcYV_OLpZHiiPpOto67GOIR4pd1yc0H7fk2mOb3ew_p2T38rxbravt--tmtdxWKIFVjqPSqBvtF6OKaqyXRigrDQc4gKq11ZpxwVGwg3XWK0S2UELYA5paoBZTcv83O75-Di6X_SkN_aiY92MdWANKMfED4YVY_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642082660</pqid></control><display><type>article</type><title>Analysis of Disfluencies for automatic detection of Mild Cognitive Impartment: a deep learning approach</title><source>Publicly Available Content Database</source><creator>Lopez-de-Ipiña, Karmele ; Unai Martinez de Lizarduy ; Calvo, Pilar ; Beita, Blanca ; García-Melero, Joseba ; Ecay-Torres, Miriam ; Estanga, Ainara ; Faundez-Zanuy, Marcos</creator><creatorcontrib>Lopez-de-Ipiña, Karmele ; Unai Martinez de Lizarduy ; Calvo, Pilar ; Beita, Blanca ; García-Melero, Joseba ; Ecay-Torres, Miriam ; Estanga, Ainara ; Faundez-Zanuy, Marcos</creatorcontrib><description>The so-called Mild Cognitive Impairment (MCI) or cognitive loss appears in a previous stage before Alzheimer's Disease (AD), but it does not seem sufficiently severe to interfere in independent abilities of daily life, so it usually does not receive an appropriate diagnosis. Its detection is a challenging issue to be addressed by medical specialists. This work presents a novel proposal based on automatic analysis of speech and disfluencies aimed at supporting MCI diagnosis. The approach includes deep learning by means of Convolutional Neural Networks (CNN) and non-linear multifeature modelling. Moreover, to select the most relevant features non-parametric Mann-Whitney U-testt and Support Vector Machine Attribute (SVM) evaluation are used.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2203.11606</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alzheimer's disease ; Artificial neural networks ; Deep learning ; Diagnosis ; Support vector machines</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2642082660?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Lopez-de-Ipiña, Karmele</creatorcontrib><creatorcontrib>Unai Martinez de Lizarduy</creatorcontrib><creatorcontrib>Calvo, Pilar</creatorcontrib><creatorcontrib>Beita, Blanca</creatorcontrib><creatorcontrib>García-Melero, Joseba</creatorcontrib><creatorcontrib>Ecay-Torres, Miriam</creatorcontrib><creatorcontrib>Estanga, Ainara</creatorcontrib><creatorcontrib>Faundez-Zanuy, Marcos</creatorcontrib><title>Analysis of Disfluencies for automatic detection of Mild Cognitive Impartment: a deep learning approach</title><title>arXiv.org</title><description>The so-called Mild Cognitive Impairment (MCI) or cognitive loss appears in a previous stage before Alzheimer's Disease (AD), but it does not seem sufficiently severe to interfere in independent abilities of daily life, so it usually does not receive an appropriate diagnosis. Its detection is a challenging issue to be addressed by medical specialists. This work presents a novel proposal based on automatic analysis of speech and disfluencies aimed at supporting MCI diagnosis. The approach includes deep learning by means of Convolutional Neural Networks (CNN) and non-linear multifeature modelling. Moreover, to select the most relevant features non-parametric Mann-Whitney U-testt and Support Vector Machine Attribute (SVM) evaluation are used.</description><subject>Alzheimer's disease</subject><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Support vector machines</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj81OAjEYRRsTEwnyAO6auB5sv07bwR3BH0gwbtiTj_5gydCO0w7Rt3eMru7m3HtzCLnjbF43UrIH7L_CZQ7AxJxzxdQVmYAQvGpqgBsyy_nEGAOlQUoxIcdlxPY7h0yTp08h-3Zw0QSXqU89xaGkM5ZgqHXFmRJS_OXeQmvpKh1jKOHi6ObcYV_OLpZHiiPpOto67GOIR4pd1yc0H7fk2mOb3ew_p2T38rxbravt--tmtdxWKIFVjqPSqBvtF6OKaqyXRigrDQc4gKq11ZpxwVGwg3XWK0S2UELYA5paoBZTcv83O75-Di6X_SkN_aiY92MdWANKMfED4YVY_w</recordid><startdate>20220322</startdate><enddate>20220322</enddate><creator>Lopez-de-Ipiña, Karmele</creator><creator>Unai Martinez de Lizarduy</creator><creator>Calvo, Pilar</creator><creator>Beita, Blanca</creator><creator>García-Melero, Joseba</creator><creator>Ecay-Torres, Miriam</creator><creator>Estanga, Ainara</creator><creator>Faundez-Zanuy, Marcos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220322</creationdate><title>Analysis of Disfluencies for automatic detection of Mild Cognitive Impartment: a deep learning approach</title><author>Lopez-de-Ipiña, Karmele ; Unai Martinez de Lizarduy ; Calvo, Pilar ; Beita, Blanca ; García-Melero, Joseba ; Ecay-Torres, Miriam ; Estanga, Ainara ; Faundez-Zanuy, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-e1a67a787f955068df5c36d5c122b2647d770131a30bdedf6aa09633dbac43a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alzheimer's disease</topic><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Lopez-de-Ipiña, Karmele</creatorcontrib><creatorcontrib>Unai Martinez de Lizarduy</creatorcontrib><creatorcontrib>Calvo, Pilar</creatorcontrib><creatorcontrib>Beita, Blanca</creatorcontrib><creatorcontrib>García-Melero, Joseba</creatorcontrib><creatorcontrib>Ecay-Torres, Miriam</creatorcontrib><creatorcontrib>Estanga, Ainara</creatorcontrib><creatorcontrib>Faundez-Zanuy, Marcos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez-de-Ipiña, Karmele</au><au>Unai Martinez de Lizarduy</au><au>Calvo, Pilar</au><au>Beita, Blanca</au><au>García-Melero, Joseba</au><au>Ecay-Torres, Miriam</au><au>Estanga, Ainara</au><au>Faundez-Zanuy, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Disfluencies for automatic detection of Mild Cognitive Impartment: a deep learning approach</atitle><jtitle>arXiv.org</jtitle><date>2022-03-22</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The so-called Mild Cognitive Impairment (MCI) or cognitive loss appears in a previous stage before Alzheimer's Disease (AD), but it does not seem sufficiently severe to interfere in independent abilities of daily life, so it usually does not receive an appropriate diagnosis. Its detection is a challenging issue to be addressed by medical specialists. This work presents a novel proposal based on automatic analysis of speech and disfluencies aimed at supporting MCI diagnosis. The approach includes deep learning by means of Convolutional Neural Networks (CNN) and non-linear multifeature modelling. Moreover, to select the most relevant features non-parametric Mann-Whitney U-testt and Support Vector Machine Attribute (SVM) evaluation are used.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2203.11606</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2642082660 |
source | Publicly Available Content Database |
subjects | Alzheimer's disease Artificial neural networks Deep learning Diagnosis Support vector machines |
title | Analysis of Disfluencies for automatic detection of Mild Cognitive Impartment: a deep learning approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Disfluencies%20for%20automatic%20detection%20of%20Mild%20Cognitive%20Impartment:%20a%20deep%20learning%20approach&rft.jtitle=arXiv.org&rft.au=Lopez-de-Ipi%C3%B1a,%20Karmele&rft.date=2022-03-22&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2203.11606&rft_dat=%3Cproquest%3E2642082660%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-e1a67a787f955068df5c36d5c122b2647d770131a30bdedf6aa09633dbac43a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642082660&rft_id=info:pmid/&rfr_iscdi=true |