Loading…
An improved statistical approach for moving object detection in thermal video frames
In a video surveillance system, background modeling is assumed to be a fundamental technique for moving object detection. The surveillance system based on thermal video overcomes many challenges, such as background variations, varying light intensity, external illumination source, and so on. This pa...
Saved in:
Published in: | Multimedia tools and applications 2022-03, Vol.81 (7), p.9289-9311 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In a video surveillance system, background modeling is assumed to be a fundamental technique for moving object detection. The surveillance system based on thermal video overcomes many challenges, such as background variations, varying light intensity, external illumination source, and so on. This paper presents a new method for background modeling and background subtraction. The method utilizes the combined approach of Fisher's Linear Discriminant and Relative Entropy for pixel based classification and detection of moving objects in thermal video frames. The experimental results show the higher average value of various performance indicators like Accuracy, ROC, and F-measure. In contrast, the percentage of false classification and total error is minimum and also has lesser execution time. The method outperforms when compared with the other existing methods. |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-021-11548-x |