Loading…

Highly efficient triplet-triplet annihilation upconversion in polycaprolactone: application to 3D printable architectures and microneedles

This research reports the next generation of solid-state triplet-triplet annihilation upconversion (TTA-UC) host material (polycaprolactone, PCL) for highly efficient, processable, and biocompatible solid-state TTA-UC. UC PCL was successfully fabricated using a drop-casting method and showed intense...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2022-03, Vol.1 (12), p.4584-4589
Main Authors: Park, Jeong-Min, Lee, Haklae, Choe, Hyun-Seok, Ahn, Suk-kyun, Seong, Keum-Yong, Yang, Seung Yun, Kim, Jae-Hyuk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c247t-cbdc75660eb9a0d735d0a30f28fbb141711962342bd889c7e42ae3550e24776b3
cites cdi_FETCH-LOGICAL-c247t-cbdc75660eb9a0d735d0a30f28fbb141711962342bd889c7e42ae3550e24776b3
container_end_page 4589
container_issue 12
container_start_page 4584
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 1
creator Park, Jeong-Min
Lee, Haklae
Choe, Hyun-Seok
Ahn, Suk-kyun
Seong, Keum-Yong
Yang, Seung Yun
Kim, Jae-Hyuk
description This research reports the next generation of solid-state triplet-triplet annihilation upconversion (TTA-UC) host material (polycaprolactone, PCL) for highly efficient, processable, and biocompatible solid-state TTA-UC. UC PCL was successfully fabricated using a drop-casting method and showed intense UC emission, moderate photostability, and an enhanced UC quantum yield (3.1%). After the characterization of its photochemical properties, the UC PCL was manipulated to form 3D UC structures and UC microneedles by using a commercially available 3D printer and thermal press molding method, respectively, and exhibited strong UC emission even after being subjected to heat manipulation. This is the first report describing an effective and processable solid-phase UC host material, thus paving the way for various applications in solar and biophotonic devices by integrating UC materials with complex 3D shapes. This research reports the next generation of solid-state triplet-triplet annihilation upconversion (TTA-UC) host material (polycaprolactone, PCL) for highly efficient, processable, and biocompatible solid-state TTA-UC.
doi_str_mv 10.1039/d1tc04834a
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2642352973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642352973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-cbdc75660eb9a0d735d0a30f28fbb141711962342bd889c7e42ae3550e24776b3</originalsourceid><addsrcrecordid>eNpFkU1Lw0AQhhdRsNRevAsL3oTofiTZxFtp1QoFL_UcNpuJ3bLdxN2N0L_gr3Zris5lZuCZr3cQuqbknhJePjQ0KJIWPJVnaMJIRhKR8fT8L2b5JZp5vyPRCpoXeTlB3yv9sTUHDG2rlQYbcHC6NxCSk8fSWr3VRgbdWTz0qrNf4Pwx0Rb3nTko2bvOSBU6C49Y9r3RaqRDh_kS907bIGsDWDq11QFUGBz42LjBe61cLIPGgL9CF600HmYnP0Xvz0-bxSpZv728LubrRLFUhETVjRJZnhOoS0kawbOGSE5aVrR1TVMqKC1zxlNWN0VRKgEpk8CzjEAsF3nNp-h27BvX_hzAh2rXDc7GkRXLU8YzVgoeqbuRigt676Ct4h176Q4VJdVR7mpJN4tfuecRvhlh59Uf9_8O_gMfy39u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642352973</pqid></control><display><type>article</type><title>Highly efficient triplet-triplet annihilation upconversion in polycaprolactone: application to 3D printable architectures and microneedles</title><source>Royal Society of Chemistry</source><creator>Park, Jeong-Min ; Lee, Haklae ; Choe, Hyun-Seok ; Ahn, Suk-kyun ; Seong, Keum-Yong ; Yang, Seung Yun ; Kim, Jae-Hyuk</creator><creatorcontrib>Park, Jeong-Min ; Lee, Haklae ; Choe, Hyun-Seok ; Ahn, Suk-kyun ; Seong, Keum-Yong ; Yang, Seung Yun ; Kim, Jae-Hyuk</creatorcontrib><description>This research reports the next generation of solid-state triplet-triplet annihilation upconversion (TTA-UC) host material (polycaprolactone, PCL) for highly efficient, processable, and biocompatible solid-state TTA-UC. UC PCL was successfully fabricated using a drop-casting method and showed intense UC emission, moderate photostability, and an enhanced UC quantum yield (3.1%). After the characterization of its photochemical properties, the UC PCL was manipulated to form 3D UC structures and UC microneedles by using a commercially available 3D printer and thermal press molding method, respectively, and exhibited strong UC emission even after being subjected to heat manipulation. This is the first report describing an effective and processable solid-phase UC host material, thus paving the way for various applications in solar and biophotonic devices by integrating UC materials with complex 3D shapes. This research reports the next generation of solid-state triplet-triplet annihilation upconversion (TTA-UC) host material (polycaprolactone, PCL) for highly efficient, processable, and biocompatible solid-state TTA-UC.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d1tc04834a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Biocompatibility ; Emission ; Needles ; Polycaprolactone ; Solid phases ; Solid state ; Three dimensional printing ; Upconversion</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2022-03, Vol.1 (12), p.4584-4589</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-cbdc75660eb9a0d735d0a30f28fbb141711962342bd889c7e42ae3550e24776b3</citedby><cites>FETCH-LOGICAL-c247t-cbdc75660eb9a0d735d0a30f28fbb141711962342bd889c7e42ae3550e24776b3</cites><orcidid>0000-0002-3215-2178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Park, Jeong-Min</creatorcontrib><creatorcontrib>Lee, Haklae</creatorcontrib><creatorcontrib>Choe, Hyun-Seok</creatorcontrib><creatorcontrib>Ahn, Suk-kyun</creatorcontrib><creatorcontrib>Seong, Keum-Yong</creatorcontrib><creatorcontrib>Yang, Seung Yun</creatorcontrib><creatorcontrib>Kim, Jae-Hyuk</creatorcontrib><title>Highly efficient triplet-triplet annihilation upconversion in polycaprolactone: application to 3D printable architectures and microneedles</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>This research reports the next generation of solid-state triplet-triplet annihilation upconversion (TTA-UC) host material (polycaprolactone, PCL) for highly efficient, processable, and biocompatible solid-state TTA-UC. UC PCL was successfully fabricated using a drop-casting method and showed intense UC emission, moderate photostability, and an enhanced UC quantum yield (3.1%). After the characterization of its photochemical properties, the UC PCL was manipulated to form 3D UC structures and UC microneedles by using a commercially available 3D printer and thermal press molding method, respectively, and exhibited strong UC emission even after being subjected to heat manipulation. This is the first report describing an effective and processable solid-phase UC host material, thus paving the way for various applications in solar and biophotonic devices by integrating UC materials with complex 3D shapes. This research reports the next generation of solid-state triplet-triplet annihilation upconversion (TTA-UC) host material (polycaprolactone, PCL) for highly efficient, processable, and biocompatible solid-state TTA-UC.</description><subject>Biocompatibility</subject><subject>Emission</subject><subject>Needles</subject><subject>Polycaprolactone</subject><subject>Solid phases</subject><subject>Solid state</subject><subject>Three dimensional printing</subject><subject>Upconversion</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkU1Lw0AQhhdRsNRevAsL3oTofiTZxFtp1QoFL_UcNpuJ3bLdxN2N0L_gr3Zris5lZuCZr3cQuqbknhJePjQ0KJIWPJVnaMJIRhKR8fT8L2b5JZp5vyPRCpoXeTlB3yv9sTUHDG2rlQYbcHC6NxCSk8fSWr3VRgbdWTz0qrNf4Pwx0Rb3nTko2bvOSBU6C49Y9r3RaqRDh_kS907bIGsDWDq11QFUGBz42LjBe61cLIPGgL9CF600HmYnP0Xvz0-bxSpZv728LubrRLFUhETVjRJZnhOoS0kawbOGSE5aVrR1TVMqKC1zxlNWN0VRKgEpk8CzjEAsF3nNp-h27BvX_hzAh2rXDc7GkRXLU8YzVgoeqbuRigt676Ct4h176Q4VJdVR7mpJN4tfuecRvhlh59Uf9_8O_gMfy39u</recordid><startdate>20220324</startdate><enddate>20220324</enddate><creator>Park, Jeong-Min</creator><creator>Lee, Haklae</creator><creator>Choe, Hyun-Seok</creator><creator>Ahn, Suk-kyun</creator><creator>Seong, Keum-Yong</creator><creator>Yang, Seung Yun</creator><creator>Kim, Jae-Hyuk</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3215-2178</orcidid></search><sort><creationdate>20220324</creationdate><title>Highly efficient triplet-triplet annihilation upconversion in polycaprolactone: application to 3D printable architectures and microneedles</title><author>Park, Jeong-Min ; Lee, Haklae ; Choe, Hyun-Seok ; Ahn, Suk-kyun ; Seong, Keum-Yong ; Yang, Seung Yun ; Kim, Jae-Hyuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-cbdc75660eb9a0d735d0a30f28fbb141711962342bd889c7e42ae3550e24776b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocompatibility</topic><topic>Emission</topic><topic>Needles</topic><topic>Polycaprolactone</topic><topic>Solid phases</topic><topic>Solid state</topic><topic>Three dimensional printing</topic><topic>Upconversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Jeong-Min</creatorcontrib><creatorcontrib>Lee, Haklae</creatorcontrib><creatorcontrib>Choe, Hyun-Seok</creatorcontrib><creatorcontrib>Ahn, Suk-kyun</creatorcontrib><creatorcontrib>Seong, Keum-Yong</creatorcontrib><creatorcontrib>Yang, Seung Yun</creatorcontrib><creatorcontrib>Kim, Jae-Hyuk</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jeong-Min</au><au>Lee, Haklae</au><au>Choe, Hyun-Seok</au><au>Ahn, Suk-kyun</au><au>Seong, Keum-Yong</au><au>Yang, Seung Yun</au><au>Kim, Jae-Hyuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly efficient triplet-triplet annihilation upconversion in polycaprolactone: application to 3D printable architectures and microneedles</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2022-03-24</date><risdate>2022</risdate><volume>1</volume><issue>12</issue><spage>4584</spage><epage>4589</epage><pages>4584-4589</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>This research reports the next generation of solid-state triplet-triplet annihilation upconversion (TTA-UC) host material (polycaprolactone, PCL) for highly efficient, processable, and biocompatible solid-state TTA-UC. UC PCL was successfully fabricated using a drop-casting method and showed intense UC emission, moderate photostability, and an enhanced UC quantum yield (3.1%). After the characterization of its photochemical properties, the UC PCL was manipulated to form 3D UC structures and UC microneedles by using a commercially available 3D printer and thermal press molding method, respectively, and exhibited strong UC emission even after being subjected to heat manipulation. This is the first report describing an effective and processable solid-phase UC host material, thus paving the way for various applications in solar and biophotonic devices by integrating UC materials with complex 3D shapes. This research reports the next generation of solid-state triplet-triplet annihilation upconversion (TTA-UC) host material (polycaprolactone, PCL) for highly efficient, processable, and biocompatible solid-state TTA-UC.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1tc04834a</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3215-2178</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2022-03, Vol.1 (12), p.4584-4589
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2642352973
source Royal Society of Chemistry
subjects Biocompatibility
Emission
Needles
Polycaprolactone
Solid phases
Solid state
Three dimensional printing
Upconversion
title Highly efficient triplet-triplet annihilation upconversion in polycaprolactone: application to 3D printable architectures and microneedles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20efficient%20triplet-triplet%20annihilation%20upconversion%20in%20polycaprolactone:%20application%20to%203D%20printable%20architectures%20and%20microneedles&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Park,%20Jeong-Min&rft.date=2022-03-24&rft.volume=1&rft.issue=12&rft.spage=4584&rft.epage=4589&rft.pages=4584-4589&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d1tc04834a&rft_dat=%3Cproquest_cross%3E2642352973%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-cbdc75660eb9a0d735d0a30f28fbb141711962342bd889c7e42ae3550e24776b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642352973&rft_id=info:pmid/&rfr_iscdi=true