Loading…
Hydrogen Production and Degradation of Ciprofloxacin by Ag@TiO2-MoS2 Photocatalysts
The photocatalytic activity of silver-based catalysts containing different amounts of molybdenum disulfide (MoS2; 5, 10 and 20 wt.%) was evaluated by the degradation of the antibiotic ciprofloxacin and the production of hydrogen via water splitting. All the silver (Ag)-based catalysts degraded more...
Saved in:
Published in: | Catalysts 2022-03, Vol.12 (3), p.267 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The photocatalytic activity of silver-based catalysts containing different amounts of molybdenum disulfide (MoS2; 5, 10 and 20 wt.%) was evaluated by the degradation of the antibiotic ciprofloxacin and the production of hydrogen via water splitting. All the silver (Ag)-based catalysts degraded more than 70% of the antibiotic in 60 min. The catalyst that exhibited the best result was 5%Ag@TiO2-P25-5%MoS2, with ca. 91% of degradation. The control experiments and stability tests showed that photocatalysis was the degradation pathway and the selected silver-based catalysts were stable after seven cycles, with less than 2% loss of efficiency per cycle and less than 7% after seven cycles. The catalyst with the highest hydrogen production was 5%Ag@TiO2 NWs-20%MoS2, 1792 μmol/hg, at a wavelength of 400 nm. This amount was ca. 32 times greater than that obtained by the pristine titanium oxide nanowires catalyst. The enhancement was attributed to the high surface area of the catalysts, along with the synergism created by the silver nanoparticles and MoS2. All the catalysts were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller (BET) surface area analysis and energy dispersive X-ray spectroscopy (EDS). |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal12030267 |