Loading…

Molecular-Dynamics Modeling of the Surface Mechanical Properties Using the ReaxFF Potential

The tribological and wear-resistant behavior of a surface are determined by its morphology, level of defects, degree of crystallinity, and mechanical properties. The surface roughness, crystallite size, dislocations, and point defects are significant parameters on different spatial scales. Advances...

Full description

Saved in:
Bibliographic Details
Published in:Surface investigation, x-ray, synchrotron and neutron techniques x-ray, synchrotron and neutron techniques, 2021-12, Vol.15 (Suppl 1), p.S92-S97
Main Authors: Rusalev, Yu. V., Guda, A. A., Pashkov, D. M., Belyak, O. A., Kolesnikov, V. I., Soldatov, A. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c198t-6fecc9e4cbea8982a8cff1a8a20a37a13a77e8cce5426dffb6f9f5520ff2b283
container_end_page S97
container_issue Suppl 1
container_start_page S92
container_title Surface investigation, x-ray, synchrotron and neutron techniques
container_volume 15
creator Rusalev, Yu. V.
Guda, A. A.
Pashkov, D. M.
Belyak, O. A.
Kolesnikov, V. I.
Soldatov, A. V.
description The tribological and wear-resistant behavior of a surface are determined by its morphology, level of defects, degree of crystallinity, and mechanical properties. The surface roughness, crystallite size, dislocations, and point defects are significant parameters on different spatial scales. Advances in methods for supercomputer modeling enable numerical experiments on the atomic level as well as at the nanoscale and microscale. Here, we perform nanoindentation experiments for a system consisting of ~1000 particles, which is the level where precise methods of density functional theory are no longer applicable while empirical potentials are decidedly rough. Defect-formation processes, effects of amorphization on mechanical properties, and irreversible processes of material deformation caused by an indenter are demonstrated at the scale of 2.5 nm. Our results open up new avenues for studying the mechanical and tribological properties of materials by numerical simulations of nanoindentation.
doi_str_mv 10.1134/S1027451022020185
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2642372082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642372082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-6fecc9e4cbea8982a8cff1a8a20a37a13a77e8cce5426dffb6f9f5520ff2b283</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA82qS3WyyR6lWhRaLrScPyzSdtFu2m5rsgv33ZqngQbzMDLzvvYFHyDVnt5yn2d2cM6EyGadggnEtT8iAa14kihXZabyjnPT6ObkIYcuYVKnMB-Rj6mo0XQ0-eTg0sKtMoFO3wrpq1tRZ2m6QzjtvwSCdotlAUxmo6cy7Pfq2wkDfQ4_23BvC13hMZ67Fpq2gviRnFuqAVz97SBbjx8XoOZm8Pr2M7ieJ4YVuk9yiMQVmZomgCy1AG2s5aBAMUgU8BaVQG4MyE_nK2mVuCyulYNaKpdDpkNwcY_fefXYY2nLrOt_Ej6XIM5EqwbSIFD9SxrsQPNpy76sd-EPJWdlXWP6pMHrE0RMi26zR_yb_b_oGbnFzkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642372082</pqid></control><display><type>article</type><title>Molecular-Dynamics Modeling of the Surface Mechanical Properties Using the ReaxFF Potential</title><source>Springer Nature</source><creator>Rusalev, Yu. V. ; Guda, A. A. ; Pashkov, D. M. ; Belyak, O. A. ; Kolesnikov, V. I. ; Soldatov, A. V.</creator><creatorcontrib>Rusalev, Yu. V. ; Guda, A. A. ; Pashkov, D. M. ; Belyak, O. A. ; Kolesnikov, V. I. ; Soldatov, A. V.</creatorcontrib><description>The tribological and wear-resistant behavior of a surface are determined by its morphology, level of defects, degree of crystallinity, and mechanical properties. The surface roughness, crystallite size, dislocations, and point defects are significant parameters on different spatial scales. Advances in methods for supercomputer modeling enable numerical experiments on the atomic level as well as at the nanoscale and microscale. Here, we perform nanoindentation experiments for a system consisting of ~1000 particles, which is the level where precise methods of density functional theory are no longer applicable while empirical potentials are decidedly rough. Defect-formation processes, effects of amorphization on mechanical properties, and irreversible processes of material deformation caused by an indenter are demonstrated at the scale of 2.5 nm. Our results open up new avenues for studying the mechanical and tribological properties of materials by numerical simulations of nanoindentation.</description><identifier>ISSN: 1027-4510</identifier><identifier>EISSN: 1819-7094</identifier><identifier>DOI: 10.1134/S1027451022020185</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amorphization ; Chemistry and Materials Science ; Crystal defects ; Crystal dislocations ; Crystallites ; Deformation ; Degree of crystallinity ; Density functional theory ; Dynamic mechanical properties ; Irreversible processes ; Material properties ; Materials Science ; Mathematical models ; Mechanical properties ; Molecular dynamics ; Nanoindentation ; Point defects ; Surface roughness ; Surfaces and Interfaces ; Thin Films ; Tribology ; Wear resistance</subject><ispartof>Surface investigation, x-ray, synchrotron and neutron techniques, 2021-12, Vol.15 (Suppl 1), p.S92-S97</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1027-4510, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, Vol. 15, Suppl. 1, pp. S92–S97. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2022, published in Poverkhnost’, 2022, No. 3, pp. 101–106.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-6fecc9e4cbea8982a8cff1a8a20a37a13a77e8cce5426dffb6f9f5520ff2b283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rusalev, Yu. V.</creatorcontrib><creatorcontrib>Guda, A. A.</creatorcontrib><creatorcontrib>Pashkov, D. M.</creatorcontrib><creatorcontrib>Belyak, O. A.</creatorcontrib><creatorcontrib>Kolesnikov, V. I.</creatorcontrib><creatorcontrib>Soldatov, A. V.</creatorcontrib><title>Molecular-Dynamics Modeling of the Surface Mechanical Properties Using the ReaxFF Potential</title><title>Surface investigation, x-ray, synchrotron and neutron techniques</title><addtitle>J. Surf. Investig</addtitle><description>The tribological and wear-resistant behavior of a surface are determined by its morphology, level of defects, degree of crystallinity, and mechanical properties. The surface roughness, crystallite size, dislocations, and point defects are significant parameters on different spatial scales. Advances in methods for supercomputer modeling enable numerical experiments on the atomic level as well as at the nanoscale and microscale. Here, we perform nanoindentation experiments for a system consisting of ~1000 particles, which is the level where precise methods of density functional theory are no longer applicable while empirical potentials are decidedly rough. Defect-formation processes, effects of amorphization on mechanical properties, and irreversible processes of material deformation caused by an indenter are demonstrated at the scale of 2.5 nm. Our results open up new avenues for studying the mechanical and tribological properties of materials by numerical simulations of nanoindentation.</description><subject>Amorphization</subject><subject>Chemistry and Materials Science</subject><subject>Crystal defects</subject><subject>Crystal dislocations</subject><subject>Crystallites</subject><subject>Deformation</subject><subject>Degree of crystallinity</subject><subject>Density functional theory</subject><subject>Dynamic mechanical properties</subject><subject>Irreversible processes</subject><subject>Material properties</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Molecular dynamics</subject><subject>Nanoindentation</subject><subject>Point defects</subject><subject>Surface roughness</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Wear resistance</subject><issn>1027-4510</issn><issn>1819-7094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvA82qS3WyyR6lWhRaLrScPyzSdtFu2m5rsgv33ZqngQbzMDLzvvYFHyDVnt5yn2d2cM6EyGadggnEtT8iAa14kihXZabyjnPT6ObkIYcuYVKnMB-Rj6mo0XQ0-eTg0sKtMoFO3wrpq1tRZ2m6QzjtvwSCdotlAUxmo6cy7Pfq2wkDfQ4_23BvC13hMZ67Fpq2gviRnFuqAVz97SBbjx8XoOZm8Pr2M7ieJ4YVuk9yiMQVmZomgCy1AG2s5aBAMUgU8BaVQG4MyE_nK2mVuCyulYNaKpdDpkNwcY_fefXYY2nLrOt_Ej6XIM5EqwbSIFD9SxrsQPNpy76sd-EPJWdlXWP6pMHrE0RMi26zR_yb_b_oGbnFzkQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Rusalev, Yu. V.</creator><creator>Guda, A. A.</creator><creator>Pashkov, D. M.</creator><creator>Belyak, O. A.</creator><creator>Kolesnikov, V. I.</creator><creator>Soldatov, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Molecular-Dynamics Modeling of the Surface Mechanical Properties Using the ReaxFF Potential</title><author>Rusalev, Yu. V. ; Guda, A. A. ; Pashkov, D. M. ; Belyak, O. A. ; Kolesnikov, V. I. ; Soldatov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-6fecc9e4cbea8982a8cff1a8a20a37a13a77e8cce5426dffb6f9f5520ff2b283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amorphization</topic><topic>Chemistry and Materials Science</topic><topic>Crystal defects</topic><topic>Crystal dislocations</topic><topic>Crystallites</topic><topic>Deformation</topic><topic>Degree of crystallinity</topic><topic>Density functional theory</topic><topic>Dynamic mechanical properties</topic><topic>Irreversible processes</topic><topic>Material properties</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Molecular dynamics</topic><topic>Nanoindentation</topic><topic>Point defects</topic><topic>Surface roughness</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rusalev, Yu. V.</creatorcontrib><creatorcontrib>Guda, A. A.</creatorcontrib><creatorcontrib>Pashkov, D. M.</creatorcontrib><creatorcontrib>Belyak, O. A.</creatorcontrib><creatorcontrib>Kolesnikov, V. I.</creatorcontrib><creatorcontrib>Soldatov, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Surface investigation, x-ray, synchrotron and neutron techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rusalev, Yu. V.</au><au>Guda, A. A.</au><au>Pashkov, D. M.</au><au>Belyak, O. A.</au><au>Kolesnikov, V. I.</au><au>Soldatov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular-Dynamics Modeling of the Surface Mechanical Properties Using the ReaxFF Potential</atitle><jtitle>Surface investigation, x-ray, synchrotron and neutron techniques</jtitle><stitle>J. Surf. Investig</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>15</volume><issue>Suppl 1</issue><spage>S92</spage><epage>S97</epage><pages>S92-S97</pages><issn>1027-4510</issn><eissn>1819-7094</eissn><abstract>The tribological and wear-resistant behavior of a surface are determined by its morphology, level of defects, degree of crystallinity, and mechanical properties. The surface roughness, crystallite size, dislocations, and point defects are significant parameters on different spatial scales. Advances in methods for supercomputer modeling enable numerical experiments on the atomic level as well as at the nanoscale and microscale. Here, we perform nanoindentation experiments for a system consisting of ~1000 particles, which is the level where precise methods of density functional theory are no longer applicable while empirical potentials are decidedly rough. Defect-formation processes, effects of amorphization on mechanical properties, and irreversible processes of material deformation caused by an indenter are demonstrated at the scale of 2.5 nm. Our results open up new avenues for studying the mechanical and tribological properties of materials by numerical simulations of nanoindentation.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1027451022020185</doi></addata></record>
fulltext fulltext
identifier ISSN: 1027-4510
ispartof Surface investigation, x-ray, synchrotron and neutron techniques, 2021-12, Vol.15 (Suppl 1), p.S92-S97
issn 1027-4510
1819-7094
language eng
recordid cdi_proquest_journals_2642372082
source Springer Nature
subjects Amorphization
Chemistry and Materials Science
Crystal defects
Crystal dislocations
Crystallites
Deformation
Degree of crystallinity
Density functional theory
Dynamic mechanical properties
Irreversible processes
Material properties
Materials Science
Mathematical models
Mechanical properties
Molecular dynamics
Nanoindentation
Point defects
Surface roughness
Surfaces and Interfaces
Thin Films
Tribology
Wear resistance
title Molecular-Dynamics Modeling of the Surface Mechanical Properties Using the ReaxFF Potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular-Dynamics%20Modeling%20of%20the%20Surface%20Mechanical%20Properties%20Using%20the%20ReaxFF%20Potential&rft.jtitle=Surface%20investigation,%20x-ray,%20synchrotron%20and%20neutron%20techniques&rft.au=Rusalev,%20Yu.%20V.&rft.date=2021-12-01&rft.volume=15&rft.issue=Suppl%201&rft.spage=S92&rft.epage=S97&rft.pages=S92-S97&rft.issn=1027-4510&rft.eissn=1819-7094&rft_id=info:doi/10.1134/S1027451022020185&rft_dat=%3Cproquest_cross%3E2642372082%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-6fecc9e4cbea8982a8cff1a8a20a37a13a77e8cce5426dffb6f9f5520ff2b283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642372082&rft_id=info:pmid/&rfr_iscdi=true