Loading…
Molecular-Dynamics Modeling of the Surface Mechanical Properties Using the ReaxFF Potential
The tribological and wear-resistant behavior of a surface are determined by its morphology, level of defects, degree of crystallinity, and mechanical properties. The surface roughness, crystallite size, dislocations, and point defects are significant parameters on different spatial scales. Advances...
Saved in:
Published in: | Surface investigation, x-ray, synchrotron and neutron techniques x-ray, synchrotron and neutron techniques, 2021-12, Vol.15 (Suppl 1), p.S92-S97 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c198t-6fecc9e4cbea8982a8cff1a8a20a37a13a77e8cce5426dffb6f9f5520ff2b283 |
container_end_page | S97 |
container_issue | Suppl 1 |
container_start_page | S92 |
container_title | Surface investigation, x-ray, synchrotron and neutron techniques |
container_volume | 15 |
creator | Rusalev, Yu. V. Guda, A. A. Pashkov, D. M. Belyak, O. A. Kolesnikov, V. I. Soldatov, A. V. |
description | The tribological and wear-resistant behavior of a surface are determined by its morphology, level of defects, degree of crystallinity, and mechanical properties. The surface roughness, crystallite size, dislocations, and point defects are significant parameters on different spatial scales. Advances in methods for supercomputer modeling enable numerical experiments on the atomic level as well as at the nanoscale and microscale. Here, we perform nanoindentation experiments for a system consisting of ~1000 particles, which is the level where precise methods of density functional theory are no longer applicable while empirical potentials are decidedly rough. Defect-formation processes, effects of amorphization on mechanical properties, and irreversible processes of material deformation caused by an indenter are demonstrated at the scale of 2.5 nm. Our results open up new avenues for studying the mechanical and tribological properties of materials by numerical simulations of nanoindentation. |
doi_str_mv | 10.1134/S1027451022020185 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2642372082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642372082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-6fecc9e4cbea8982a8cff1a8a20a37a13a77e8cce5426dffb6f9f5520ff2b283</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA82qS3WyyR6lWhRaLrScPyzSdtFu2m5rsgv33ZqngQbzMDLzvvYFHyDVnt5yn2d2cM6EyGadggnEtT8iAa14kihXZabyjnPT6ObkIYcuYVKnMB-Rj6mo0XQ0-eTg0sKtMoFO3wrpq1tRZ2m6QzjtvwSCdotlAUxmo6cy7Pfq2wkDfQ4_23BvC13hMZ67Fpq2gviRnFuqAVz97SBbjx8XoOZm8Pr2M7ieJ4YVuk9yiMQVmZomgCy1AG2s5aBAMUgU8BaVQG4MyE_nK2mVuCyulYNaKpdDpkNwcY_fefXYY2nLrOt_Ej6XIM5EqwbSIFD9SxrsQPNpy76sd-EPJWdlXWP6pMHrE0RMi26zR_yb_b_oGbnFzkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642372082</pqid></control><display><type>article</type><title>Molecular-Dynamics Modeling of the Surface Mechanical Properties Using the ReaxFF Potential</title><source>Springer Nature</source><creator>Rusalev, Yu. V. ; Guda, A. A. ; Pashkov, D. M. ; Belyak, O. A. ; Kolesnikov, V. I. ; Soldatov, A. V.</creator><creatorcontrib>Rusalev, Yu. V. ; Guda, A. A. ; Pashkov, D. M. ; Belyak, O. A. ; Kolesnikov, V. I. ; Soldatov, A. V.</creatorcontrib><description>The tribological and wear-resistant behavior of a surface are determined by its morphology, level of defects, degree of crystallinity, and mechanical properties. The surface roughness, crystallite size, dislocations, and point defects are significant parameters on different spatial scales. Advances in methods for supercomputer modeling enable numerical experiments on the atomic level as well as at the nanoscale and microscale. Here, we perform nanoindentation experiments for a system consisting of ~1000 particles, which is the level where precise methods of density functional theory are no longer applicable while empirical potentials are decidedly rough. Defect-formation processes, effects of amorphization on mechanical properties, and irreversible processes of material deformation caused by an indenter are demonstrated at the scale of 2.5 nm. Our results open up new avenues for studying the mechanical and tribological properties of materials by numerical simulations of nanoindentation.</description><identifier>ISSN: 1027-4510</identifier><identifier>EISSN: 1819-7094</identifier><identifier>DOI: 10.1134/S1027451022020185</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amorphization ; Chemistry and Materials Science ; Crystal defects ; Crystal dislocations ; Crystallites ; Deformation ; Degree of crystallinity ; Density functional theory ; Dynamic mechanical properties ; Irreversible processes ; Material properties ; Materials Science ; Mathematical models ; Mechanical properties ; Molecular dynamics ; Nanoindentation ; Point defects ; Surface roughness ; Surfaces and Interfaces ; Thin Films ; Tribology ; Wear resistance</subject><ispartof>Surface investigation, x-ray, synchrotron and neutron techniques, 2021-12, Vol.15 (Suppl 1), p.S92-S97</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1027-4510, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, Vol. 15, Suppl. 1, pp. S92–S97. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2022, published in Poverkhnost’, 2022, No. 3, pp. 101–106.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-6fecc9e4cbea8982a8cff1a8a20a37a13a77e8cce5426dffb6f9f5520ff2b283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rusalev, Yu. V.</creatorcontrib><creatorcontrib>Guda, A. A.</creatorcontrib><creatorcontrib>Pashkov, D. M.</creatorcontrib><creatorcontrib>Belyak, O. A.</creatorcontrib><creatorcontrib>Kolesnikov, V. I.</creatorcontrib><creatorcontrib>Soldatov, A. V.</creatorcontrib><title>Molecular-Dynamics Modeling of the Surface Mechanical Properties Using the ReaxFF Potential</title><title>Surface investigation, x-ray, synchrotron and neutron techniques</title><addtitle>J. Surf. Investig</addtitle><description>The tribological and wear-resistant behavior of a surface are determined by its morphology, level of defects, degree of crystallinity, and mechanical properties. The surface roughness, crystallite size, dislocations, and point defects are significant parameters on different spatial scales. Advances in methods for supercomputer modeling enable numerical experiments on the atomic level as well as at the nanoscale and microscale. Here, we perform nanoindentation experiments for a system consisting of ~1000 particles, which is the level where precise methods of density functional theory are no longer applicable while empirical potentials are decidedly rough. Defect-formation processes, effects of amorphization on mechanical properties, and irreversible processes of material deformation caused by an indenter are demonstrated at the scale of 2.5 nm. Our results open up new avenues for studying the mechanical and tribological properties of materials by numerical simulations of nanoindentation.</description><subject>Amorphization</subject><subject>Chemistry and Materials Science</subject><subject>Crystal defects</subject><subject>Crystal dislocations</subject><subject>Crystallites</subject><subject>Deformation</subject><subject>Degree of crystallinity</subject><subject>Density functional theory</subject><subject>Dynamic mechanical properties</subject><subject>Irreversible processes</subject><subject>Material properties</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Molecular dynamics</subject><subject>Nanoindentation</subject><subject>Point defects</subject><subject>Surface roughness</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Wear resistance</subject><issn>1027-4510</issn><issn>1819-7094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvA82qS3WyyR6lWhRaLrScPyzSdtFu2m5rsgv33ZqngQbzMDLzvvYFHyDVnt5yn2d2cM6EyGadggnEtT8iAa14kihXZabyjnPT6ObkIYcuYVKnMB-Rj6mo0XQ0-eTg0sKtMoFO3wrpq1tRZ2m6QzjtvwSCdotlAUxmo6cy7Pfq2wkDfQ4_23BvC13hMZ67Fpq2gviRnFuqAVz97SBbjx8XoOZm8Pr2M7ieJ4YVuk9yiMQVmZomgCy1AG2s5aBAMUgU8BaVQG4MyE_nK2mVuCyulYNaKpdDpkNwcY_fefXYY2nLrOt_Ej6XIM5EqwbSIFD9SxrsQPNpy76sd-EPJWdlXWP6pMHrE0RMi26zR_yb_b_oGbnFzkQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Rusalev, Yu. V.</creator><creator>Guda, A. A.</creator><creator>Pashkov, D. M.</creator><creator>Belyak, O. A.</creator><creator>Kolesnikov, V. I.</creator><creator>Soldatov, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Molecular-Dynamics Modeling of the Surface Mechanical Properties Using the ReaxFF Potential</title><author>Rusalev, Yu. V. ; Guda, A. A. ; Pashkov, D. M. ; Belyak, O. A. ; Kolesnikov, V. I. ; Soldatov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-6fecc9e4cbea8982a8cff1a8a20a37a13a77e8cce5426dffb6f9f5520ff2b283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amorphization</topic><topic>Chemistry and Materials Science</topic><topic>Crystal defects</topic><topic>Crystal dislocations</topic><topic>Crystallites</topic><topic>Deformation</topic><topic>Degree of crystallinity</topic><topic>Density functional theory</topic><topic>Dynamic mechanical properties</topic><topic>Irreversible processes</topic><topic>Material properties</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Molecular dynamics</topic><topic>Nanoindentation</topic><topic>Point defects</topic><topic>Surface roughness</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rusalev, Yu. V.</creatorcontrib><creatorcontrib>Guda, A. A.</creatorcontrib><creatorcontrib>Pashkov, D. M.</creatorcontrib><creatorcontrib>Belyak, O. A.</creatorcontrib><creatorcontrib>Kolesnikov, V. I.</creatorcontrib><creatorcontrib>Soldatov, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Surface investigation, x-ray, synchrotron and neutron techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rusalev, Yu. V.</au><au>Guda, A. A.</au><au>Pashkov, D. M.</au><au>Belyak, O. A.</au><au>Kolesnikov, V. I.</au><au>Soldatov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular-Dynamics Modeling of the Surface Mechanical Properties Using the ReaxFF Potential</atitle><jtitle>Surface investigation, x-ray, synchrotron and neutron techniques</jtitle><stitle>J. Surf. Investig</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>15</volume><issue>Suppl 1</issue><spage>S92</spage><epage>S97</epage><pages>S92-S97</pages><issn>1027-4510</issn><eissn>1819-7094</eissn><abstract>The tribological and wear-resistant behavior of a surface are determined by its morphology, level of defects, degree of crystallinity, and mechanical properties. The surface roughness, crystallite size, dislocations, and point defects are significant parameters on different spatial scales. Advances in methods for supercomputer modeling enable numerical experiments on the atomic level as well as at the nanoscale and microscale. Here, we perform nanoindentation experiments for a system consisting of ~1000 particles, which is the level where precise methods of density functional theory are no longer applicable while empirical potentials are decidedly rough. Defect-formation processes, effects of amorphization on mechanical properties, and irreversible processes of material deformation caused by an indenter are demonstrated at the scale of 2.5 nm. Our results open up new avenues for studying the mechanical and tribological properties of materials by numerical simulations of nanoindentation.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1027451022020185</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1027-4510 |
ispartof | Surface investigation, x-ray, synchrotron and neutron techniques, 2021-12, Vol.15 (Suppl 1), p.S92-S97 |
issn | 1027-4510 1819-7094 |
language | eng |
recordid | cdi_proquest_journals_2642372082 |
source | Springer Nature |
subjects | Amorphization Chemistry and Materials Science Crystal defects Crystal dislocations Crystallites Deformation Degree of crystallinity Density functional theory Dynamic mechanical properties Irreversible processes Material properties Materials Science Mathematical models Mechanical properties Molecular dynamics Nanoindentation Point defects Surface roughness Surfaces and Interfaces Thin Films Tribology Wear resistance |
title | Molecular-Dynamics Modeling of the Surface Mechanical Properties Using the ReaxFF Potential |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular-Dynamics%20Modeling%20of%20the%20Surface%20Mechanical%20Properties%20Using%20the%20ReaxFF%20Potential&rft.jtitle=Surface%20investigation,%20x-ray,%20synchrotron%20and%20neutron%20techniques&rft.au=Rusalev,%20Yu.%20V.&rft.date=2021-12-01&rft.volume=15&rft.issue=Suppl%201&rft.spage=S92&rft.epage=S97&rft.pages=S92-S97&rft.issn=1027-4510&rft.eissn=1819-7094&rft_id=info:doi/10.1134/S1027451022020185&rft_dat=%3Cproquest_cross%3E2642372082%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-6fecc9e4cbea8982a8cff1a8a20a37a13a77e8cce5426dffb6f9f5520ff2b283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642372082&rft_id=info:pmid/&rfr_iscdi=true |