Loading…

Pathways: Asynchronous Distributed Dataflow for ML

We present the design of a new large scale orchestration layer for accelerators. Our system, Pathways, is explicitly designed to enable exploration of new systems and ML research ideas, while retaining state of the art performance for current models. Pathways uses a sharded dataflow graph of asynchr...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-03
Main Authors: Barham, Paul, Chowdhery, Aakanksha, Dean, Jeff, Ghemawat, Sanjay, Hand, Steven, Hurt, Dan, Isard, Michael, Lim, Hyeontaek, Pang, Ruoming, Roy, Sudip, Brennan Saeta, Schuh, Parker, Ryan Sepassi, Laurent El Shafey, Thekkath, Chandramohan A, Wu, Yonghui
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Barham, Paul
Chowdhery, Aakanksha
Dean, Jeff
Ghemawat, Sanjay
Hand, Steven
Hurt, Dan
Isard, Michael
Lim, Hyeontaek
Pang, Ruoming
Roy, Sudip
Brennan Saeta
Schuh, Parker
Ryan Sepassi
Laurent El Shafey
Thekkath, Chandramohan A
Wu, Yonghui
description We present the design of a new large scale orchestration layer for accelerators. Our system, Pathways, is explicitly designed to enable exploration of new systems and ML research ideas, while retaining state of the art performance for current models. Pathways uses a sharded dataflow graph of asynchronous operators that consume and produce futures, and efficiently gang-schedules heterogeneous parallel computations on thousands of accelerators while coordinating data transfers over their dedicated interconnects. Pathways makes use of a novel asynchronous distributed dataflow design that lets the control plane execute in parallel despite dependencies in the data plane. This design, with careful engineering, allows Pathways to adopt a single-controller model that makes it easier to express complex new parallelism patterns. We demonstrate that Pathways can achieve performance parity (~100% accelerator utilization) with state-of-the-art systems when running SPMD computations over 2048 TPUs, while also delivering throughput comparable to the SPMD case for Transformer models that are pipelined across 16 stages, or sharded across two islands of accelerators connected over a data center network.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2642599443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642599443</sourcerecordid><originalsourceid>FETCH-proquest_journals_26425994433</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCkgsyShPrCy2UnAsrsxLzijKz8svLVZwySwuKcpMKi1JTVFwSSxJTMvJL1dIyy9S8PXhYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IzMTI1NLSxMTY2PiVAEA64Iz4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642599443</pqid></control><display><type>article</type><title>Pathways: Asynchronous Distributed Dataflow for ML</title><source>Publicly Available Content Database</source><creator>Barham, Paul ; Chowdhery, Aakanksha ; Dean, Jeff ; Ghemawat, Sanjay ; Hand, Steven ; Hurt, Dan ; Isard, Michael ; Lim, Hyeontaek ; Pang, Ruoming ; Roy, Sudip ; Brennan Saeta ; Schuh, Parker ; Ryan Sepassi ; Laurent El Shafey ; Thekkath, Chandramohan A ; Wu, Yonghui</creator><creatorcontrib>Barham, Paul ; Chowdhery, Aakanksha ; Dean, Jeff ; Ghemawat, Sanjay ; Hand, Steven ; Hurt, Dan ; Isard, Michael ; Lim, Hyeontaek ; Pang, Ruoming ; Roy, Sudip ; Brennan Saeta ; Schuh, Parker ; Ryan Sepassi ; Laurent El Shafey ; Thekkath, Chandramohan A ; Wu, Yonghui</creatorcontrib><description>We present the design of a new large scale orchestration layer for accelerators. Our system, Pathways, is explicitly designed to enable exploration of new systems and ML research ideas, while retaining state of the art performance for current models. Pathways uses a sharded dataflow graph of asynchronous operators that consume and produce futures, and efficiently gang-schedules heterogeneous parallel computations on thousands of accelerators while coordinating data transfers over their dedicated interconnects. Pathways makes use of a novel asynchronous distributed dataflow design that lets the control plane execute in parallel despite dependencies in the data plane. This design, with careful engineering, allows Pathways to adopt a single-controller model that makes it easier to express complex new parallelism patterns. We demonstrate that Pathways can achieve performance parity (~100% accelerator utilization) with state-of-the-art systems when running SPMD computations over 2048 TPUs, while also delivering throughput comparable to the SPMD case for Transformer models that are pipelined across 16 stages, or sharded across two islands of accelerators connected over a data center network.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accelerators ; Data centers</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2642599443?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Barham, Paul</creatorcontrib><creatorcontrib>Chowdhery, Aakanksha</creatorcontrib><creatorcontrib>Dean, Jeff</creatorcontrib><creatorcontrib>Ghemawat, Sanjay</creatorcontrib><creatorcontrib>Hand, Steven</creatorcontrib><creatorcontrib>Hurt, Dan</creatorcontrib><creatorcontrib>Isard, Michael</creatorcontrib><creatorcontrib>Lim, Hyeontaek</creatorcontrib><creatorcontrib>Pang, Ruoming</creatorcontrib><creatorcontrib>Roy, Sudip</creatorcontrib><creatorcontrib>Brennan Saeta</creatorcontrib><creatorcontrib>Schuh, Parker</creatorcontrib><creatorcontrib>Ryan Sepassi</creatorcontrib><creatorcontrib>Laurent El Shafey</creatorcontrib><creatorcontrib>Thekkath, Chandramohan A</creatorcontrib><creatorcontrib>Wu, Yonghui</creatorcontrib><title>Pathways: Asynchronous Distributed Dataflow for ML</title><title>arXiv.org</title><description>We present the design of a new large scale orchestration layer for accelerators. Our system, Pathways, is explicitly designed to enable exploration of new systems and ML research ideas, while retaining state of the art performance for current models. Pathways uses a sharded dataflow graph of asynchronous operators that consume and produce futures, and efficiently gang-schedules heterogeneous parallel computations on thousands of accelerators while coordinating data transfers over their dedicated interconnects. Pathways makes use of a novel asynchronous distributed dataflow design that lets the control plane execute in parallel despite dependencies in the data plane. This design, with careful engineering, allows Pathways to adopt a single-controller model that makes it easier to express complex new parallelism patterns. We demonstrate that Pathways can achieve performance parity (~100% accelerator utilization) with state-of-the-art systems when running SPMD computations over 2048 TPUs, while also delivering throughput comparable to the SPMD case for Transformer models that are pipelined across 16 stages, or sharded across two islands of accelerators connected over a data center network.</description><subject>Accelerators</subject><subject>Data centers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCkgsyShPrCy2UnAsrsxLzijKz8svLVZwySwuKcpMKi1JTVFwSSxJTMvJL1dIyy9S8PXhYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IzMTI1NLSxMTY2PiVAEA64Iz4w</recordid><startdate>20220323</startdate><enddate>20220323</enddate><creator>Barham, Paul</creator><creator>Chowdhery, Aakanksha</creator><creator>Dean, Jeff</creator><creator>Ghemawat, Sanjay</creator><creator>Hand, Steven</creator><creator>Hurt, Dan</creator><creator>Isard, Michael</creator><creator>Lim, Hyeontaek</creator><creator>Pang, Ruoming</creator><creator>Roy, Sudip</creator><creator>Brennan Saeta</creator><creator>Schuh, Parker</creator><creator>Ryan Sepassi</creator><creator>Laurent El Shafey</creator><creator>Thekkath, Chandramohan A</creator><creator>Wu, Yonghui</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20220323</creationdate><title>Pathways: Asynchronous Distributed Dataflow for ML</title><author>Barham, Paul ; Chowdhery, Aakanksha ; Dean, Jeff ; Ghemawat, Sanjay ; Hand, Steven ; Hurt, Dan ; Isard, Michael ; Lim, Hyeontaek ; Pang, Ruoming ; Roy, Sudip ; Brennan Saeta ; Schuh, Parker ; Ryan Sepassi ; Laurent El Shafey ; Thekkath, Chandramohan A ; Wu, Yonghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26425994433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerators</topic><topic>Data centers</topic><toplevel>online_resources</toplevel><creatorcontrib>Barham, Paul</creatorcontrib><creatorcontrib>Chowdhery, Aakanksha</creatorcontrib><creatorcontrib>Dean, Jeff</creatorcontrib><creatorcontrib>Ghemawat, Sanjay</creatorcontrib><creatorcontrib>Hand, Steven</creatorcontrib><creatorcontrib>Hurt, Dan</creatorcontrib><creatorcontrib>Isard, Michael</creatorcontrib><creatorcontrib>Lim, Hyeontaek</creatorcontrib><creatorcontrib>Pang, Ruoming</creatorcontrib><creatorcontrib>Roy, Sudip</creatorcontrib><creatorcontrib>Brennan Saeta</creatorcontrib><creatorcontrib>Schuh, Parker</creatorcontrib><creatorcontrib>Ryan Sepassi</creatorcontrib><creatorcontrib>Laurent El Shafey</creatorcontrib><creatorcontrib>Thekkath, Chandramohan A</creatorcontrib><creatorcontrib>Wu, Yonghui</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barham, Paul</au><au>Chowdhery, Aakanksha</au><au>Dean, Jeff</au><au>Ghemawat, Sanjay</au><au>Hand, Steven</au><au>Hurt, Dan</au><au>Isard, Michael</au><au>Lim, Hyeontaek</au><au>Pang, Ruoming</au><au>Roy, Sudip</au><au>Brennan Saeta</au><au>Schuh, Parker</au><au>Ryan Sepassi</au><au>Laurent El Shafey</au><au>Thekkath, Chandramohan A</au><au>Wu, Yonghui</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Pathways: Asynchronous Distributed Dataflow for ML</atitle><jtitle>arXiv.org</jtitle><date>2022-03-23</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We present the design of a new large scale orchestration layer for accelerators. Our system, Pathways, is explicitly designed to enable exploration of new systems and ML research ideas, while retaining state of the art performance for current models. Pathways uses a sharded dataflow graph of asynchronous operators that consume and produce futures, and efficiently gang-schedules heterogeneous parallel computations on thousands of accelerators while coordinating data transfers over their dedicated interconnects. Pathways makes use of a novel asynchronous distributed dataflow design that lets the control plane execute in parallel despite dependencies in the data plane. This design, with careful engineering, allows Pathways to adopt a single-controller model that makes it easier to express complex new parallelism patterns. We demonstrate that Pathways can achieve performance parity (~100% accelerator utilization) with state-of-the-art systems when running SPMD computations over 2048 TPUs, while also delivering throughput comparable to the SPMD case for Transformer models that are pipelined across 16 stages, or sharded across two islands of accelerators connected over a data center network.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2642599443
source Publicly Available Content Database
subjects Accelerators
Data centers
title Pathways: Asynchronous Distributed Dataflow for ML
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Pathways:%20Asynchronous%20Distributed%20Dataflow%20for%20ML&rft.jtitle=arXiv.org&rft.au=Barham,%20Paul&rft.date=2022-03-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2642599443%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26425994433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642599443&rft_id=info:pmid/&rfr_iscdi=true