Loading…

Development of a New Multivariate Composite Drought Index for the Blue Nile River Basin

Drought is a slow-onset phenomenon that evolves over a season or even years. Drought affects people more than any other natural disaster due to its widespread and significant negative impacts. Population growth and associated water demand add further stress on water resources, especially in periods...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2022-03, Vol.14 (6), p.886
Main Authors: Ali, Marwa, Ghaith, Mostafa, Wagdy, Ahmed, Helmi, Ahmed M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drought is a slow-onset phenomenon that evolves over a season or even years. Drought affects people more than any other natural disaster due to its widespread and significant negative impacts. Population growth and associated water demand add further stress on water resources, especially in periods of drought. Drought indices represent a single value resulting from processing a considerable amount of data. These indices provide a short message to stakeholders to adapt water resource management strategies. Since drought results from interconnected phenomena, designing a composite drought index that includes several drought indices can accurately capture drought events. Drought assessment over a large-scale basin (e.g., the Blue Nile) is a challenging objective that has not been deeply tackled before except for small portions of the basin. This paper assessed droughts over the whole basin by evaluating meteorological, agricultural, and hydrological drought indices. The calculated drought indices (Standardized Runoff Index (SRI), Standardized Precipitation Index (SPI), and standardized soil moisture index (SSI)) in addition to the development of a new standardized evapotranspiration index (sETI) are jointly integrated into a novel composite drought index for the Blue Nile (BNI). The optimal weights for SPI, SRI, sETI, and SSI were 0.33, 0.26, 0.2, and 0.19, respectively, in the designed BNI.
ISSN:2073-4441
2073-4441
DOI:10.3390/w14060886