Loading…

Removal of Organoselenium from Aqueous Solution by Nanoscale Zerovalent Iron Supported on Granular Activated Carbon

Nanoscale zerovalent iron particles (nZVI) immobilized on coconut shell-based granular activated carbon (GAC) were studied to remove organoselenium from wastewater. A chemical reduction technique that involves the application of sodium borohydride was adopted for the adsorbent preparation. The textu...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2022-03, Vol.14 (6), p.987
Main Authors: Okonji, Stanley Onyinye, Achari, Gopal, Pernitsky, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanoscale zerovalent iron particles (nZVI) immobilized on coconut shell-based granular activated carbon (GAC) were studied to remove organoselenium from wastewater. A chemical reduction technique that involves the application of sodium borohydride was adopted for the adsorbent preparation. The texture, morphology and chemical composition of the synthesized adsorbents were analyzed with a scanning electron microscope (SEM), nitrogen adsorption–desorption isotherms and X-ray diffraction (XRD). Batch experiment with various pHs and contact times were conducted to evaluate nZVI/GAC adsorption performance. The results showed that nZVI/GAC has a strong affinity to adsorb selenomethionine (SeMet) and selenocysteine (SeCys) from wastewaters. The maximum removal efficiency for the composite (nZVI/GAC) was 99.9% for SeCys and 78.2% for SeMet removal, which was significantly higher than that of nZVI (SeCy, 59.2%; SeMet, 10.8%). The adsorption kinetics were studied by pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models. Amongst the two, PSO seemed to have a better fit (SeCy, R2 > 0.998; SeMet, R2 > 0.999). The adsorption process was investigated using Langmuir and Freundlich isotherm models. Electrostatic attraction played a significant role in the removal of organoselenium by nZVI/GAC adsorption. Overall, the results indicated that GAC-supported nZVI can be considered a promising and efficient technology for removing organoselenium from wastewater.
ISSN:2073-4441
2073-4441
DOI:10.3390/w14060987