Loading…
Cell-Free Massive MIMO Systems With Low-Resolution ADCs: The Rician Fading Case
This article studies the uplink and downlink achievable rates of cell-free massive multi-input multi-output (MIMO) systems over Rician fading channels, assuming that each access point possesses multiple antennas that are connected with low-resolution analog-to-digital converters (ADCs). Achievable c...
Saved in:
Published in: | IEEE systems journal 2022-03, Vol.16 (1), p.1471-1482 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article studies the uplink and downlink achievable rates of cell-free massive multi-input multi-output (MIMO) systems over Rician fading channels, assuming that each access point possesses multiple antennas that are connected with low-resolution analog-to-digital converters (ADCs). Achievable closed-form rate expressions for both uplink and downlink are derived, which enable us to explore the design issues surrounded by the key parameters, such as the number of total antennas, the transmit power, the ADC resolution, and the Rician \mathbf {{\it K}}-factor. Moreover, the weighted max-min fairness power optimization algorithms are proposed. Specifically, the proposed algorithms for uplink and downlink can be formulated as geometric programming and second-order-cone programming, respectively. All the theoretical analyses and the effectiveness of the proposed algorithms are verified by simulation experiments. |
---|---|
ISSN: | 1932-8184 1937-9234 |
DOI: | 10.1109/JSYST.2020.3043216 |