Loading…

Bent partitions

Spread and partial spread constructions are the most powerful bent function constructions. A large variety of bent functions from a 2 m -dimensional vector space V 2 m ( p ) over F p into F p can be generated, which are constant on the sets of a partition of V 2 m ( p ) obtained with the subspaces o...

Full description

Saved in:
Bibliographic Details
Published in:Designs, codes, and cryptography codes, and cryptography, 2022, Vol.90 (4), p.1081-1101
Main Authors: Anbar, Nurdagül, Meidl, Wilfried
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-25ac0296405372cb140a22f4438ced00a8c247ae246377767edb2d9488645d3b3
cites cdi_FETCH-LOGICAL-c319t-25ac0296405372cb140a22f4438ced00a8c247ae246377767edb2d9488645d3b3
container_end_page 1101
container_issue 4
container_start_page 1081
container_title Designs, codes, and cryptography
container_volume 90
creator Anbar, Nurdagül
Meidl, Wilfried
description Spread and partial spread constructions are the most powerful bent function constructions. A large variety of bent functions from a 2 m -dimensional vector space V 2 m ( p ) over F p into F p can be generated, which are constant on the sets of a partition of V 2 m ( p ) obtained with the subspaces of the (partial) spread. Moreover, from spreads one obtains not only bent functions between elementary abelian groups, but bent functions from V 2 m ( p ) to B , where B can be any abelian group of order p k , k ≤ m . As recently shown (Meidl, Pirsic 2021), partitions from spreads are not the only partitions of V 2 m ( 2 ) , with these remarkable properties. In this article we present first such partitions—other than (partial) spreads—which we call bent partitions, for V 2 m ( p ) , p odd. We investigate general properties of bent partitions, like number and cardinality of the subsets of the partition. We show that with bent partitions we can construct bent functions from V 2 m ( p ) into a cyclic group Z p k . With these results, we obtain the first constructions of bent functions from V 2 m ( p ) into Z p k , p odd, which provably do not come from (partial) spreads.
doi_str_mv 10.1007/s10623-022-01029-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2643264941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2643264941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-25ac0296405372cb140a22f4438ced00a8c247ae246377767edb2d9488645d3b3</originalsourceid><addsrcrecordid>eNp9j8tLxDAQxoMoWFfx7knwHJ3M5NEedfEFC3tZzyFNU-mibU26B_evN1rBm4fhO8z34MfYhYBrAWBukgCNxAGRgwCs-P6AFUIZ4kaV-pAVUKHi-YPH7CSlLQAIAizY-V3op8vRxambuqFPp-yodW8pnP3qgr083G-WT3y1fnxe3q64J1FNHJXzeUZLUGTQ10KCQ2ylpNKHBsCVHqVxAaUmY4w2oamxqWRZaqkaqmnBrubeMQ4fu5Amux12sc-TFrWkfJUU2YWzy8chpRhaO8bu3cVPK8B-g9sZ3GYw-wNu9zlEcyhlc_8a4l_1P6kvTVVYRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643264941</pqid></control><display><type>article</type><title>Bent partitions</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Anbar, Nurdagül ; Meidl, Wilfried</creator><creatorcontrib>Anbar, Nurdagül ; Meidl, Wilfried</creatorcontrib><description>Spread and partial spread constructions are the most powerful bent function constructions. A large variety of bent functions from a 2 m -dimensional vector space V 2 m ( p ) over F p into F p can be generated, which are constant on the sets of a partition of V 2 m ( p ) obtained with the subspaces of the (partial) spread. Moreover, from spreads one obtains not only bent functions between elementary abelian groups, but bent functions from V 2 m ( p ) to B , where B can be any abelian group of order p k , k ≤ m . As recently shown (Meidl, Pirsic 2021), partitions from spreads are not the only partitions of V 2 m ( 2 ) , with these remarkable properties. In this article we present first such partitions—other than (partial) spreads—which we call bent partitions, for V 2 m ( p ) , p odd. We investigate general properties of bent partitions, like number and cardinality of the subsets of the partition. We show that with bent partitions we can construct bent functions from V 2 m ( p ) into a cyclic group Z p k . With these results, we obtain the first constructions of bent functions from V 2 m ( p ) into Z p k , p odd, which provably do not come from (partial) spreads.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-022-01029-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Coding and Information Theory ; Computer Science ; Cryptology ; Discrete Mathematics in Computer Science ; Group theory ; Subspaces</subject><ispartof>Designs, codes, and cryptography, 2022, Vol.90 (4), p.1081-1101</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-25ac0296405372cb140a22f4438ced00a8c247ae246377767edb2d9488645d3b3</citedby><cites>FETCH-LOGICAL-c319t-25ac0296405372cb140a22f4438ced00a8c247ae246377767edb2d9488645d3b3</cites><orcidid>0000-0003-4600-5088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Anbar, Nurdagül</creatorcontrib><creatorcontrib>Meidl, Wilfried</creatorcontrib><title>Bent partitions</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>Spread and partial spread constructions are the most powerful bent function constructions. A large variety of bent functions from a 2 m -dimensional vector space V 2 m ( p ) over F p into F p can be generated, which are constant on the sets of a partition of V 2 m ( p ) obtained with the subspaces of the (partial) spread. Moreover, from spreads one obtains not only bent functions between elementary abelian groups, but bent functions from V 2 m ( p ) to B , where B can be any abelian group of order p k , k ≤ m . As recently shown (Meidl, Pirsic 2021), partitions from spreads are not the only partitions of V 2 m ( 2 ) , with these remarkable properties. In this article we present first such partitions—other than (partial) spreads—which we call bent partitions, for V 2 m ( p ) , p odd. We investigate general properties of bent partitions, like number and cardinality of the subsets of the partition. We show that with bent partitions we can construct bent functions from V 2 m ( p ) into a cyclic group Z p k . With these results, we obtain the first constructions of bent functions from V 2 m ( p ) into Z p k , p odd, which provably do not come from (partial) spreads.</description><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Group theory</subject><subject>Subspaces</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j8tLxDAQxoMoWFfx7knwHJ3M5NEedfEFC3tZzyFNU-mibU26B_evN1rBm4fhO8z34MfYhYBrAWBukgCNxAGRgwCs-P6AFUIZ4kaV-pAVUKHi-YPH7CSlLQAIAizY-V3op8vRxambuqFPp-yodW8pnP3qgr083G-WT3y1fnxe3q64J1FNHJXzeUZLUGTQ10KCQ2ylpNKHBsCVHqVxAaUmY4w2oamxqWRZaqkaqmnBrubeMQ4fu5Amux12sc-TFrWkfJUU2YWzy8chpRhaO8bu3cVPK8B-g9sZ3GYw-wNu9zlEcyhlc_8a4l_1P6kvTVVYRw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Anbar, Nurdagül</creator><creator>Meidl, Wilfried</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4600-5088</orcidid></search><sort><creationdate>2022</creationdate><title>Bent partitions</title><author>Anbar, Nurdagül ; Meidl, Wilfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-25ac0296405372cb140a22f4438ced00a8c247ae246377767edb2d9488645d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Group theory</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anbar, Nurdagül</creatorcontrib><creatorcontrib>Meidl, Wilfried</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anbar, Nurdagül</au><au>Meidl, Wilfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bent partitions</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2022</date><risdate>2022</risdate><volume>90</volume><issue>4</issue><spage>1081</spage><epage>1101</epage><pages>1081-1101</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>Spread and partial spread constructions are the most powerful bent function constructions. A large variety of bent functions from a 2 m -dimensional vector space V 2 m ( p ) over F p into F p can be generated, which are constant on the sets of a partition of V 2 m ( p ) obtained with the subspaces of the (partial) spread. Moreover, from spreads one obtains not only bent functions between elementary abelian groups, but bent functions from V 2 m ( p ) to B , where B can be any abelian group of order p k , k ≤ m . As recently shown (Meidl, Pirsic 2021), partitions from spreads are not the only partitions of V 2 m ( 2 ) , with these remarkable properties. In this article we present first such partitions—other than (partial) spreads—which we call bent partitions, for V 2 m ( p ) , p odd. We investigate general properties of bent partitions, like number and cardinality of the subsets of the partition. We show that with bent partitions we can construct bent functions from V 2 m ( p ) into a cyclic group Z p k . With these results, we obtain the first constructions of bent functions from V 2 m ( p ) into Z p k , p odd, which provably do not come from (partial) spreads.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-022-01029-z</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4600-5088</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2022, Vol.90 (4), p.1081-1101
issn 0925-1022
1573-7586
language eng
recordid cdi_proquest_journals_2643264941
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Coding and Information Theory
Computer Science
Cryptology
Discrete Mathematics in Computer Science
Group theory
Subspaces
title Bent partitions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bent%20partitions&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Anbar,%20Nurdag%C3%BCl&rft.date=2022&rft.volume=90&rft.issue=4&rft.spage=1081&rft.epage=1101&rft.pages=1081-1101&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-022-01029-z&rft_dat=%3Cproquest_cross%3E2643264941%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-25ac0296405372cb140a22f4438ced00a8c247ae246377767edb2d9488645d3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2643264941&rft_id=info:pmid/&rfr_iscdi=true