Loading…
Low Thermal Conductivity of Carbon Dioxide at High Pressure: Implications for Icy Planetary Interiors
Carbon dioxide is commonly found in terrestrial planets and its thermal property is relevant to the dynamics and evolution of those terrestrial planets. In this work, we combine time‐domain thermoreflectance measurements and first‐principles calculations to determine the thermal conductivity of CO2...
Saved in:
Published in: | Journal of geophysical research. Planets 2022-03, Vol.127 (3), p.n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a3305-655066d4cb4a4bbf340ae045ba4d1ad8eb7d0a4c018a73e198ed81f36070a1bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-a3305-655066d4cb4a4bbf340ae045ba4d1ad8eb7d0a4c018a73e198ed81f36070a1bc3 |
container_end_page | n/a |
container_issue | 3 |
container_start_page | |
container_title | Journal of geophysical research. Planets |
container_volume | 127 |
creator | Shieh, Sean R. Hsieh, Wen‐Pin Tsao, Yi‐Chih Crisostomo, Christian Hsu, Han |
description | Carbon dioxide is commonly found in terrestrial planets and its thermal property is relevant to the dynamics and evolution of those terrestrial planets. In this work, we combine time‐domain thermoreflectance measurements and first‐principles calculations to determine the thermal conductivity of CO2 up to 70 GPa at room temperature. Our results show that the thermal conductivity of liquid CO2 is ∼0.22 W m−1 K−1 at 0.3–0.5 GPa and increases to ∼0.28 W m−1 K−1 when the liquid CO2 transforms into molecular solid phase I (dry ice). Upon further compression, the mean value of thermal conductivity of phase I increases to 1.4–2.1 W m−1 K−1 at ∼10 GPa and then slightly drops across the phase I‐III boundary. Phase III exhibits a gentle increase of thermal conductivity with pressure and reaches to a maximum value of ∼4 W m−1 K−1 at ∼45 GPa, but shows an abrupt drop when transforming into a non‐molecular amorphous solid. The pressure evolution of CO2 thermal conductivity across different phases may have significant implications for the heat flow and temperature distribution in the interiors of planets and moons containing CO2.
Plain Language Summary
Knowledge of thermal conductivity of important planetary materials provides an insightful view and information for understanding the heat flow and temperature profile within planetary bodies. CO2 is an important phase that can be found in Earth and Mars. However, its thermal conductivity under extreme conditions remains largely unknown. In this work, we report the first thermal conductivity measurements of CO2 liquid and solids at pressures up to 70 GPa at room temperature, using time‐domain thermoreflectance coupled with diamond‐anvil cells together with the first‐principles calculations. Our results show that the thermal conductivity of CO2 gradually increases from 0.22 W m−1 K−1 at 0.3–0.5 GPa and reaches a maximum of ∼4 W m−1 K−1 at ∼45 GPa. Importantly, the thermal conductivity of CO2 is much lower than that of H2O. Our results may have critical implications for the temperature profile as well as the formation of liquid water in icy planets.
Key Points
We present the first thermal conductivity measurements of CO2 to 70 GPa
Thermal conductivity of CO2 phase I reaches 1.4–2.1 Wm−1K−1 at ∼10 GPa and CO2 phase III reaches a maximum mean value of ∼4 Wm−1K−1 at ∼45 GPa
Thermal conductivity of CO2 is much lower than that of H2O, which may have implications for the formation of liquid water in icy planets |
doi_str_mv | 10.1029/2022JE007180 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2644004506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644004506</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3305-655066d4cb4a4bbf340ae045ba4d1ad8eb7d0a4c018a73e198ed81f36070a1bc3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsGhvfoAFr0Zns5t_3iTWNqVgkXoOk2Rit6TZupta8-2NVMGTc5lh-PHe4zF2JeBWgJ_c-eD78wlAJGI4YSNfhImXCIDT3xuS6JyNndvAMPHwEnLEaGEOfLUmu8WGp6at9mWnP3TXc1PzFG1hWv6ozaeuiGPHZ_ptzZeWnNtbuufZdtfoEjttWsdrY3lW9nzZYEsd2p5nbUdWG-su2VmNjaPxz75gr0-TVTrzFs_TLH1YeCglBF4YBBCGlSoLhaooaqkACVRQoKoEVjEVUQWoShAxRpJEElMVi1qGEAGKopQX7Pqou7PmfU-uyzdmb9vBMvdDpWDQgnCgbo5UaY1zlup8Z_V2CJwLyL-7zP92OeDyiB90Q_2_bD6fvkx8EatAfgHtxXTx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644004506</pqid></control><display><type>article</type><title>Low Thermal Conductivity of Carbon Dioxide at High Pressure: Implications for Icy Planetary Interiors</title><source>Wiley</source><source>Alma/SFX Local Collection</source><creator>Shieh, Sean R. ; Hsieh, Wen‐Pin ; Tsao, Yi‐Chih ; Crisostomo, Christian ; Hsu, Han</creator><creatorcontrib>Shieh, Sean R. ; Hsieh, Wen‐Pin ; Tsao, Yi‐Chih ; Crisostomo, Christian ; Hsu, Han</creatorcontrib><description>Carbon dioxide is commonly found in terrestrial planets and its thermal property is relevant to the dynamics and evolution of those terrestrial planets. In this work, we combine time‐domain thermoreflectance measurements and first‐principles calculations to determine the thermal conductivity of CO2 up to 70 GPa at room temperature. Our results show that the thermal conductivity of liquid CO2 is ∼0.22 W m−1 K−1 at 0.3–0.5 GPa and increases to ∼0.28 W m−1 K−1 when the liquid CO2 transforms into molecular solid phase I (dry ice). Upon further compression, the mean value of thermal conductivity of phase I increases to 1.4–2.1 W m−1 K−1 at ∼10 GPa and then slightly drops across the phase I‐III boundary. Phase III exhibits a gentle increase of thermal conductivity with pressure and reaches to a maximum value of ∼4 W m−1 K−1 at ∼45 GPa, but shows an abrupt drop when transforming into a non‐molecular amorphous solid. The pressure evolution of CO2 thermal conductivity across different phases may have significant implications for the heat flow and temperature distribution in the interiors of planets and moons containing CO2.
Plain Language Summary
Knowledge of thermal conductivity of important planetary materials provides an insightful view and information for understanding the heat flow and temperature profile within planetary bodies. CO2 is an important phase that can be found in Earth and Mars. However, its thermal conductivity under extreme conditions remains largely unknown. In this work, we report the first thermal conductivity measurements of CO2 liquid and solids at pressures up to 70 GPa at room temperature, using time‐domain thermoreflectance coupled with diamond‐anvil cells together with the first‐principles calculations. Our results show that the thermal conductivity of CO2 gradually increases from 0.22 W m−1 K−1 at 0.3–0.5 GPa and reaches a maximum of ∼4 W m−1 K−1 at ∼45 GPa. Importantly, the thermal conductivity of CO2 is much lower than that of H2O. Our results may have critical implications for the temperature profile as well as the formation of liquid water in icy planets.
Key Points
We present the first thermal conductivity measurements of CO2 to 70 GPa
Thermal conductivity of CO2 phase I reaches 1.4–2.1 Wm−1K−1 at ∼10 GPa and CO2 phase III reaches a maximum mean value of ∼4 Wm−1K−1 at ∼45 GPa
Thermal conductivity of CO2 is much lower than that of H2O, which may have implications for the formation of liquid water in icy planets</description><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1029/2022JE007180</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Carbon dioxide ; Carbon dioxide measurements ; CO2 ; Diamonds ; Domains ; Dry ice ; Evolution ; Heat conductivity ; Heat flow ; Heat transfer ; Heat transmission ; High pressure ; Mathematical analysis ; Planet formation ; Planetary evolution ; planetary interior ; Planetary interiors ; Planets ; Principles ; Room temperature ; Solid phases ; TDTR ; Temperature distribution ; Temperature profiles ; Terrestrial planets ; Thermal conductivity ; Thermodynamic properties ; Time measurement ; Water</subject><ispartof>Journal of geophysical research. Planets, 2022-03, Vol.127 (3), p.n/a</ispartof><rights>2022. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3305-655066d4cb4a4bbf340ae045ba4d1ad8eb7d0a4c018a73e198ed81f36070a1bc3</citedby><cites>FETCH-LOGICAL-a3305-655066d4cb4a4bbf340ae045ba4d1ad8eb7d0a4c018a73e198ed81f36070a1bc3</cites><orcidid>0000-0001-7573-3039 ; 0000-0003-1205-4770 ; 0000-0002-2333-026X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Shieh, Sean R.</creatorcontrib><creatorcontrib>Hsieh, Wen‐Pin</creatorcontrib><creatorcontrib>Tsao, Yi‐Chih</creatorcontrib><creatorcontrib>Crisostomo, Christian</creatorcontrib><creatorcontrib>Hsu, Han</creatorcontrib><title>Low Thermal Conductivity of Carbon Dioxide at High Pressure: Implications for Icy Planetary Interiors</title><title>Journal of geophysical research. Planets</title><description>Carbon dioxide is commonly found in terrestrial planets and its thermal property is relevant to the dynamics and evolution of those terrestrial planets. In this work, we combine time‐domain thermoreflectance measurements and first‐principles calculations to determine the thermal conductivity of CO2 up to 70 GPa at room temperature. Our results show that the thermal conductivity of liquid CO2 is ∼0.22 W m−1 K−1 at 0.3–0.5 GPa and increases to ∼0.28 W m−1 K−1 when the liquid CO2 transforms into molecular solid phase I (dry ice). Upon further compression, the mean value of thermal conductivity of phase I increases to 1.4–2.1 W m−1 K−1 at ∼10 GPa and then slightly drops across the phase I‐III boundary. Phase III exhibits a gentle increase of thermal conductivity with pressure and reaches to a maximum value of ∼4 W m−1 K−1 at ∼45 GPa, but shows an abrupt drop when transforming into a non‐molecular amorphous solid. The pressure evolution of CO2 thermal conductivity across different phases may have significant implications for the heat flow and temperature distribution in the interiors of planets and moons containing CO2.
Plain Language Summary
Knowledge of thermal conductivity of important planetary materials provides an insightful view and information for understanding the heat flow and temperature profile within planetary bodies. CO2 is an important phase that can be found in Earth and Mars. However, its thermal conductivity under extreme conditions remains largely unknown. In this work, we report the first thermal conductivity measurements of CO2 liquid and solids at pressures up to 70 GPa at room temperature, using time‐domain thermoreflectance coupled with diamond‐anvil cells together with the first‐principles calculations. Our results show that the thermal conductivity of CO2 gradually increases from 0.22 W m−1 K−1 at 0.3–0.5 GPa and reaches a maximum of ∼4 W m−1 K−1 at ∼45 GPa. Importantly, the thermal conductivity of CO2 is much lower than that of H2O. Our results may have critical implications for the temperature profile as well as the formation of liquid water in icy planets.
Key Points
We present the first thermal conductivity measurements of CO2 to 70 GPa
Thermal conductivity of CO2 phase I reaches 1.4–2.1 Wm−1K−1 at ∼10 GPa and CO2 phase III reaches a maximum mean value of ∼4 Wm−1K−1 at ∼45 GPa
Thermal conductivity of CO2 is much lower than that of H2O, which may have implications for the formation of liquid water in icy planets</description><subject>Carbon dioxide</subject><subject>Carbon dioxide measurements</subject><subject>CO2</subject><subject>Diamonds</subject><subject>Domains</subject><subject>Dry ice</subject><subject>Evolution</subject><subject>Heat conductivity</subject><subject>Heat flow</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>High pressure</subject><subject>Mathematical analysis</subject><subject>Planet formation</subject><subject>Planetary evolution</subject><subject>planetary interior</subject><subject>Planetary interiors</subject><subject>Planets</subject><subject>Principles</subject><subject>Room temperature</subject><subject>Solid phases</subject><subject>TDTR</subject><subject>Temperature distribution</subject><subject>Temperature profiles</subject><subject>Terrestrial planets</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><subject>Time measurement</subject><subject>Water</subject><issn>2169-9097</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsGhvfoAFr0Zns5t_3iTWNqVgkXoOk2Rit6TZupta8-2NVMGTc5lh-PHe4zF2JeBWgJ_c-eD78wlAJGI4YSNfhImXCIDT3xuS6JyNndvAMPHwEnLEaGEOfLUmu8WGp6at9mWnP3TXc1PzFG1hWv6ozaeuiGPHZ_ptzZeWnNtbuufZdtfoEjttWsdrY3lW9nzZYEsd2p5nbUdWG-su2VmNjaPxz75gr0-TVTrzFs_TLH1YeCglBF4YBBCGlSoLhaooaqkACVRQoKoEVjEVUQWoShAxRpJEElMVi1qGEAGKopQX7Pqou7PmfU-uyzdmb9vBMvdDpWDQgnCgbo5UaY1zlup8Z_V2CJwLyL-7zP92OeDyiB90Q_2_bD6fvkx8EatAfgHtxXTx</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Shieh, Sean R.</creator><creator>Hsieh, Wen‐Pin</creator><creator>Tsao, Yi‐Chih</creator><creator>Crisostomo, Christian</creator><creator>Hsu, Han</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7573-3039</orcidid><orcidid>https://orcid.org/0000-0003-1205-4770</orcidid><orcidid>https://orcid.org/0000-0002-2333-026X</orcidid></search><sort><creationdate>202203</creationdate><title>Low Thermal Conductivity of Carbon Dioxide at High Pressure: Implications for Icy Planetary Interiors</title><author>Shieh, Sean R. ; Hsieh, Wen‐Pin ; Tsao, Yi‐Chih ; Crisostomo, Christian ; Hsu, Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3305-655066d4cb4a4bbf340ae045ba4d1ad8eb7d0a4c018a73e198ed81f36070a1bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>Carbon dioxide measurements</topic><topic>CO2</topic><topic>Diamonds</topic><topic>Domains</topic><topic>Dry ice</topic><topic>Evolution</topic><topic>Heat conductivity</topic><topic>Heat flow</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>High pressure</topic><topic>Mathematical analysis</topic><topic>Planet formation</topic><topic>Planetary evolution</topic><topic>planetary interior</topic><topic>Planetary interiors</topic><topic>Planets</topic><topic>Principles</topic><topic>Room temperature</topic><topic>Solid phases</topic><topic>TDTR</topic><topic>Temperature distribution</topic><topic>Temperature profiles</topic><topic>Terrestrial planets</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><topic>Time measurement</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shieh, Sean R.</creatorcontrib><creatorcontrib>Hsieh, Wen‐Pin</creatorcontrib><creatorcontrib>Tsao, Yi‐Chih</creatorcontrib><creatorcontrib>Crisostomo, Christian</creatorcontrib><creatorcontrib>Hsu, Han</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shieh, Sean R.</au><au>Hsieh, Wen‐Pin</au><au>Tsao, Yi‐Chih</au><au>Crisostomo, Christian</au><au>Hsu, Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Thermal Conductivity of Carbon Dioxide at High Pressure: Implications for Icy Planetary Interiors</atitle><jtitle>Journal of geophysical research. Planets</jtitle><date>2022-03</date><risdate>2022</risdate><volume>127</volume><issue>3</issue><epage>n/a</epage><issn>2169-9097</issn><eissn>2169-9100</eissn><abstract>Carbon dioxide is commonly found in terrestrial planets and its thermal property is relevant to the dynamics and evolution of those terrestrial planets. In this work, we combine time‐domain thermoreflectance measurements and first‐principles calculations to determine the thermal conductivity of CO2 up to 70 GPa at room temperature. Our results show that the thermal conductivity of liquid CO2 is ∼0.22 W m−1 K−1 at 0.3–0.5 GPa and increases to ∼0.28 W m−1 K−1 when the liquid CO2 transforms into molecular solid phase I (dry ice). Upon further compression, the mean value of thermal conductivity of phase I increases to 1.4–2.1 W m−1 K−1 at ∼10 GPa and then slightly drops across the phase I‐III boundary. Phase III exhibits a gentle increase of thermal conductivity with pressure and reaches to a maximum value of ∼4 W m−1 K−1 at ∼45 GPa, but shows an abrupt drop when transforming into a non‐molecular amorphous solid. The pressure evolution of CO2 thermal conductivity across different phases may have significant implications for the heat flow and temperature distribution in the interiors of planets and moons containing CO2.
Plain Language Summary
Knowledge of thermal conductivity of important planetary materials provides an insightful view and information for understanding the heat flow and temperature profile within planetary bodies. CO2 is an important phase that can be found in Earth and Mars. However, its thermal conductivity under extreme conditions remains largely unknown. In this work, we report the first thermal conductivity measurements of CO2 liquid and solids at pressures up to 70 GPa at room temperature, using time‐domain thermoreflectance coupled with diamond‐anvil cells together with the first‐principles calculations. Our results show that the thermal conductivity of CO2 gradually increases from 0.22 W m−1 K−1 at 0.3–0.5 GPa and reaches a maximum of ∼4 W m−1 K−1 at ∼45 GPa. Importantly, the thermal conductivity of CO2 is much lower than that of H2O. Our results may have critical implications for the temperature profile as well as the formation of liquid water in icy planets.
Key Points
We present the first thermal conductivity measurements of CO2 to 70 GPa
Thermal conductivity of CO2 phase I reaches 1.4–2.1 Wm−1K−1 at ∼10 GPa and CO2 phase III reaches a maximum mean value of ∼4 Wm−1K−1 at ∼45 GPa
Thermal conductivity of CO2 is much lower than that of H2O, which may have implications for the formation of liquid water in icy planets</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2022JE007180</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7573-3039</orcidid><orcidid>https://orcid.org/0000-0003-1205-4770</orcidid><orcidid>https://orcid.org/0000-0002-2333-026X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9097 |
ispartof | Journal of geophysical research. Planets, 2022-03, Vol.127 (3), p.n/a |
issn | 2169-9097 2169-9100 |
language | eng |
recordid | cdi_proquest_journals_2644004506 |
source | Wiley; Alma/SFX Local Collection |
subjects | Carbon dioxide Carbon dioxide measurements CO2 Diamonds Domains Dry ice Evolution Heat conductivity Heat flow Heat transfer Heat transmission High pressure Mathematical analysis Planet formation Planetary evolution planetary interior Planetary interiors Planets Principles Room temperature Solid phases TDTR Temperature distribution Temperature profiles Terrestrial planets Thermal conductivity Thermodynamic properties Time measurement Water |
title | Low Thermal Conductivity of Carbon Dioxide at High Pressure: Implications for Icy Planetary Interiors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Thermal%20Conductivity%20of%20Carbon%20Dioxide%20at%20High%20Pressure:%20Implications%20for%20Icy%20Planetary%20Interiors&rft.jtitle=Journal%20of%20geophysical%20research.%20Planets&rft.au=Shieh,%20Sean%20R.&rft.date=2022-03&rft.volume=127&rft.issue=3&rft.epage=n/a&rft.issn=2169-9097&rft.eissn=2169-9100&rft_id=info:doi/10.1029/2022JE007180&rft_dat=%3Cproquest_cross%3E2644004506%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3305-655066d4cb4a4bbf340ae045ba4d1ad8eb7d0a4c018a73e198ed81f36070a1bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2644004506&rft_id=info:pmid/&rfr_iscdi=true |