Loading…

Effects on metal availability of the application of tree biochar and municipal waste biosolid in a metalliferous mine tailings substrate

The phytostabilization of mine tailings requires a previous assessment of the effects of soil amendments on metal mobility. The goal of this work was to evaluate the response of metal availability (both labile and potentially available pools) to the addition of two organic amendments (a municipal wa...

Full description

Saved in:
Bibliographic Details
Published in:Environmental geochemistry and health 2022-04, Vol.44 (4), p.1317-1327
Main Authors: Conesa, Héctor M., Párraga-Aguado, Isabel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The phytostabilization of mine tailings requires a previous assessment of the effects of soil amendments on metal mobility. The goal of this work was to evaluate the response of metal availability (both labile and potentially available pools) to the addition of two organic amendments (a municipal waste biosolid and a tree biochar), separately and in combination, in a mine tailings substrate. For this purpose, a comprehensive comparison among several single extraction procedures and a sequential extraction procedure was performed. The effects on metals phytotoxicity were assessed through a germination test using seeds of Zygophyllum fabago . When evaluating the effect of the amendments in the labile metal pool, the biochar resulted effective in decreasing metal-extractable concentrations, especially for Cd, Mn and Zn. The treatment with biochar also showed better germination parameters (percentage of germinated seeds and sooner germination) than the rest of the unamended and amended treatments. The use of the municipal organic biosolid increased labile metal concentrations and potentially available metal pools assessed with EDTA and did not contribute to achieve better results of seed germination. Compared to the single biosolid treatment, the combination of biochar/biosolid modulated some labile metal concentrations and showed similar germination parameters to those obtained for the treatment amended only with biochar. This positive effect of biochar in modulating the soluble metal concentrations associated with certain urban/agricultural organic materials supported the suitability of using these combinations in field applications, although a higher rate of biochar application would be recommended to obtain a more beneficial effect.
ISSN:0269-4042
1573-2983
DOI:10.1007/s10653-021-00967-2