Loading…

Walsh's conformal map onto lemniscatic domains for polynomial pre-images I

We consider Walsh's conformal map from the exterior of a compact set \(E \subseteq \mathbb{C}\) onto a lemniscatic domain. If \(E\) is simply connected, the lemniscatic domain is the exterior of a circle, while if \(E\) has several components, the lemniscatic domain is the exterior of a general...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-08
Main Authors: Schiefermayr, Klaus, Sète, Olivier
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Schiefermayr, Klaus
Sète, Olivier
description We consider Walsh's conformal map from the exterior of a compact set \(E \subseteq \mathbb{C}\) onto a lemniscatic domain. If \(E\) is simply connected, the lemniscatic domain is the exterior of a circle, while if \(E\) has several components, the lemniscatic domain is the exterior of a generalized lemniscate and is determined by the logarithmic capacity of \(E\) and by the exponents and centers of the generalized lemniscate. For general \(E\), we characterize the exponents in terms of the Green's function of \(E^c\). Under additional symmetry conditions on \(E\), we also locate the centers of the lemniscatic domain. For polynomial pre-images \(E = P^{-1}(\Omega)\) of a simply-connected infinite compact set \(\Omega\), we explicitly determine the exponents in the lemniscatic domain and derive a set of equations to determine the centers of the lemniscatic domain. Finally, we present several examples where we explicitly obtain the exponents and centers of the lemniscatic domain, as well as the conformal map.
doi_str_mv 10.48550/arxiv.2203.14716
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2644586564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644586564</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-3899315398dfe5a5e67c5c70d579a0f22f728c7a412eec13b639fd750a28e31a3</originalsourceid><addsrcrecordid>eNotjU1LAzEUAIMgWGp_gLeAB09bk5e8JHuU4kel4KXgsTyziW7ZbNbNVvTfu6CnuQwzjF1JsdYOUdzS-N1-rQGEWkttpTljC1BKVk4DXLBVKUchBBgLiGrBnl-pKx83hfvcxzwm6niiged-yrwLqW-Lp6n1vMmJ2r7w2eFD7n76nNrZHcZQtYneQ-HbS3Ye51hY_XPJ9g_3-81TtXt53G7udhUh6Eq5ulYSVe2aGJAwGOvRW9GgrUlEgGjBeUtaQgheqjej6thYFAQuKElqya7_ssOYP0-hTIdjPo39fDyA0RqdQaPVL8aqTgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644586564</pqid></control><display><type>article</type><title>Walsh's conformal map onto lemniscatic domains for polynomial pre-images I</title><source>Publicly Available Content Database</source><creator>Schiefermayr, Klaus ; Sète, Olivier</creator><creatorcontrib>Schiefermayr, Klaus ; Sète, Olivier</creatorcontrib><description>We consider Walsh's conformal map from the exterior of a compact set \(E \subseteq \mathbb{C}\) onto a lemniscatic domain. If \(E\) is simply connected, the lemniscatic domain is the exterior of a circle, while if \(E\) has several components, the lemniscatic domain is the exterior of a generalized lemniscate and is determined by the logarithmic capacity of \(E\) and by the exponents and centers of the generalized lemniscate. For general \(E\), we characterize the exponents in terms of the Green's function of \(E^c\). Under additional symmetry conditions on \(E\), we also locate the centers of the lemniscatic domain. For polynomial pre-images \(E = P^{-1}(\Omega)\) of a simply-connected infinite compact set \(\Omega\), we explicitly determine the exponents in the lemniscatic domain and derive a set of equations to determine the centers of the lemniscatic domain. Finally, we present several examples where we explicitly obtain the exponents and centers of the lemniscatic domain, as well as the conformal map.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2203.14716</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Conformal mapping ; Domains ; Exponents ; Green's functions ; Polynomials</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2644586564?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Schiefermayr, Klaus</creatorcontrib><creatorcontrib>Sète, Olivier</creatorcontrib><title>Walsh's conformal map onto lemniscatic domains for polynomial pre-images I</title><title>arXiv.org</title><description>We consider Walsh's conformal map from the exterior of a compact set \(E \subseteq \mathbb{C}\) onto a lemniscatic domain. If \(E\) is simply connected, the lemniscatic domain is the exterior of a circle, while if \(E\) has several components, the lemniscatic domain is the exterior of a generalized lemniscate and is determined by the logarithmic capacity of \(E\) and by the exponents and centers of the generalized lemniscate. For general \(E\), we characterize the exponents in terms of the Green's function of \(E^c\). Under additional symmetry conditions on \(E\), we also locate the centers of the lemniscatic domain. For polynomial pre-images \(E = P^{-1}(\Omega)\) of a simply-connected infinite compact set \(\Omega\), we explicitly determine the exponents in the lemniscatic domain and derive a set of equations to determine the centers of the lemniscatic domain. Finally, we present several examples where we explicitly obtain the exponents and centers of the lemniscatic domain, as well as the conformal map.</description><subject>Conformal mapping</subject><subject>Domains</subject><subject>Exponents</subject><subject>Green's functions</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LAzEUAIMgWGp_gLeAB09bk5e8JHuU4kel4KXgsTyziW7ZbNbNVvTfu6CnuQwzjF1JsdYOUdzS-N1-rQGEWkttpTljC1BKVk4DXLBVKUchBBgLiGrBnl-pKx83hfvcxzwm6niiged-yrwLqW-Lp6n1vMmJ2r7w2eFD7n76nNrZHcZQtYneQ-HbS3Ye51hY_XPJ9g_3-81TtXt53G7udhUh6Eq5ulYSVe2aGJAwGOvRW9GgrUlEgGjBeUtaQgheqjej6thYFAQuKElqya7_ssOYP0-hTIdjPo39fDyA0RqdQaPVL8aqTgM</recordid><startdate>20220803</startdate><enddate>20220803</enddate><creator>Schiefermayr, Klaus</creator><creator>Sète, Olivier</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220803</creationdate><title>Walsh's conformal map onto lemniscatic domains for polynomial pre-images I</title><author>Schiefermayr, Klaus ; Sète, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-3899315398dfe5a5e67c5c70d579a0f22f728c7a412eec13b639fd750a28e31a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conformal mapping</topic><topic>Domains</topic><topic>Exponents</topic><topic>Green's functions</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Schiefermayr, Klaus</creatorcontrib><creatorcontrib>Sète, Olivier</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schiefermayr, Klaus</au><au>Sète, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Walsh's conformal map onto lemniscatic domains for polynomial pre-images I</atitle><jtitle>arXiv.org</jtitle><date>2022-08-03</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We consider Walsh's conformal map from the exterior of a compact set \(E \subseteq \mathbb{C}\) onto a lemniscatic domain. If \(E\) is simply connected, the lemniscatic domain is the exterior of a circle, while if \(E\) has several components, the lemniscatic domain is the exterior of a generalized lemniscate and is determined by the logarithmic capacity of \(E\) and by the exponents and centers of the generalized lemniscate. For general \(E\), we characterize the exponents in terms of the Green's function of \(E^c\). Under additional symmetry conditions on \(E\), we also locate the centers of the lemniscatic domain. For polynomial pre-images \(E = P^{-1}(\Omega)\) of a simply-connected infinite compact set \(\Omega\), we explicitly determine the exponents in the lemniscatic domain and derive a set of equations to determine the centers of the lemniscatic domain. Finally, we present several examples where we explicitly obtain the exponents and centers of the lemniscatic domain, as well as the conformal map.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2203.14716</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2644586564
source Publicly Available Content Database
subjects Conformal mapping
Domains
Exponents
Green's functions
Polynomials
title Walsh's conformal map onto lemniscatic domains for polynomial pre-images I
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Walsh's%20conformal%20map%20onto%20lemniscatic%20domains%20for%20polynomial%20pre-images%20I&rft.jtitle=arXiv.org&rft.au=Schiefermayr,%20Klaus&rft.date=2022-08-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2203.14716&rft_dat=%3Cproquest%3E2644586564%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-3899315398dfe5a5e67c5c70d579a0f22f728c7a412eec13b639fd750a28e31a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2644586564&rft_id=info:pmid/&rfr_iscdi=true