Loading…
Walsh's conformal map onto lemniscatic domains for polynomial pre-images I
We consider Walsh's conformal map from the exterior of a compact set \(E \subseteq \mathbb{C}\) onto a lemniscatic domain. If \(E\) is simply connected, the lemniscatic domain is the exterior of a circle, while if \(E\) has several components, the lemniscatic domain is the exterior of a general...
Saved in:
Published in: | arXiv.org 2022-08 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Schiefermayr, Klaus Sète, Olivier |
description | We consider Walsh's conformal map from the exterior of a compact set \(E \subseteq \mathbb{C}\) onto a lemniscatic domain. If \(E\) is simply connected, the lemniscatic domain is the exterior of a circle, while if \(E\) has several components, the lemniscatic domain is the exterior of a generalized lemniscate and is determined by the logarithmic capacity of \(E\) and by the exponents and centers of the generalized lemniscate. For general \(E\), we characterize the exponents in terms of the Green's function of \(E^c\). Under additional symmetry conditions on \(E\), we also locate the centers of the lemniscatic domain. For polynomial pre-images \(E = P^{-1}(\Omega)\) of a simply-connected infinite compact set \(\Omega\), we explicitly determine the exponents in the lemniscatic domain and derive a set of equations to determine the centers of the lemniscatic domain. Finally, we present several examples where we explicitly obtain the exponents and centers of the lemniscatic domain, as well as the conformal map. |
doi_str_mv | 10.48550/arxiv.2203.14716 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2644586564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644586564</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-3899315398dfe5a5e67c5c70d579a0f22f728c7a412eec13b639fd750a28e31a3</originalsourceid><addsrcrecordid>eNotjU1LAzEUAIMgWGp_gLeAB09bk5e8JHuU4kel4KXgsTyziW7ZbNbNVvTfu6CnuQwzjF1JsdYOUdzS-N1-rQGEWkttpTljC1BKVk4DXLBVKUchBBgLiGrBnl-pKx83hfvcxzwm6niiged-yrwLqW-Lp6n1vMmJ2r7w2eFD7n76nNrZHcZQtYneQ-HbS3Ye51hY_XPJ9g_3-81TtXt53G7udhUh6Eq5ulYSVe2aGJAwGOvRW9GgrUlEgGjBeUtaQgheqjej6thYFAQuKElqya7_ssOYP0-hTIdjPo39fDyA0RqdQaPVL8aqTgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644586564</pqid></control><display><type>article</type><title>Walsh's conformal map onto lemniscatic domains for polynomial pre-images I</title><source>Publicly Available Content Database</source><creator>Schiefermayr, Klaus ; Sète, Olivier</creator><creatorcontrib>Schiefermayr, Klaus ; Sète, Olivier</creatorcontrib><description>We consider Walsh's conformal map from the exterior of a compact set \(E \subseteq \mathbb{C}\) onto a lemniscatic domain. If \(E\) is simply connected, the lemniscatic domain is the exterior of a circle, while if \(E\) has several components, the lemniscatic domain is the exterior of a generalized lemniscate and is determined by the logarithmic capacity of \(E\) and by the exponents and centers of the generalized lemniscate. For general \(E\), we characterize the exponents in terms of the Green's function of \(E^c\). Under additional symmetry conditions on \(E\), we also locate the centers of the lemniscatic domain. For polynomial pre-images \(E = P^{-1}(\Omega)\) of a simply-connected infinite compact set \(\Omega\), we explicitly determine the exponents in the lemniscatic domain and derive a set of equations to determine the centers of the lemniscatic domain. Finally, we present several examples where we explicitly obtain the exponents and centers of the lemniscatic domain, as well as the conformal map.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2203.14716</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Conformal mapping ; Domains ; Exponents ; Green's functions ; Polynomials</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2644586564?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Schiefermayr, Klaus</creatorcontrib><creatorcontrib>Sète, Olivier</creatorcontrib><title>Walsh's conformal map onto lemniscatic domains for polynomial pre-images I</title><title>arXiv.org</title><description>We consider Walsh's conformal map from the exterior of a compact set \(E \subseteq \mathbb{C}\) onto a lemniscatic domain. If \(E\) is simply connected, the lemniscatic domain is the exterior of a circle, while if \(E\) has several components, the lemniscatic domain is the exterior of a generalized lemniscate and is determined by the logarithmic capacity of \(E\) and by the exponents and centers of the generalized lemniscate. For general \(E\), we characterize the exponents in terms of the Green's function of \(E^c\). Under additional symmetry conditions on \(E\), we also locate the centers of the lemniscatic domain. For polynomial pre-images \(E = P^{-1}(\Omega)\) of a simply-connected infinite compact set \(\Omega\), we explicitly determine the exponents in the lemniscatic domain and derive a set of equations to determine the centers of the lemniscatic domain. Finally, we present several examples where we explicitly obtain the exponents and centers of the lemniscatic domain, as well as the conformal map.</description><subject>Conformal mapping</subject><subject>Domains</subject><subject>Exponents</subject><subject>Green's functions</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LAzEUAIMgWGp_gLeAB09bk5e8JHuU4kel4KXgsTyziW7ZbNbNVvTfu6CnuQwzjF1JsdYOUdzS-N1-rQGEWkttpTljC1BKVk4DXLBVKUchBBgLiGrBnl-pKx83hfvcxzwm6niiged-yrwLqW-Lp6n1vMmJ2r7w2eFD7n76nNrZHcZQtYneQ-HbS3Ye51hY_XPJ9g_3-81TtXt53G7udhUh6Eq5ulYSVe2aGJAwGOvRW9GgrUlEgGjBeUtaQgheqjej6thYFAQuKElqya7_ssOYP0-hTIdjPo39fDyA0RqdQaPVL8aqTgM</recordid><startdate>20220803</startdate><enddate>20220803</enddate><creator>Schiefermayr, Klaus</creator><creator>Sète, Olivier</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220803</creationdate><title>Walsh's conformal map onto lemniscatic domains for polynomial pre-images I</title><author>Schiefermayr, Klaus ; Sète, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-3899315398dfe5a5e67c5c70d579a0f22f728c7a412eec13b639fd750a28e31a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conformal mapping</topic><topic>Domains</topic><topic>Exponents</topic><topic>Green's functions</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Schiefermayr, Klaus</creatorcontrib><creatorcontrib>Sète, Olivier</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schiefermayr, Klaus</au><au>Sète, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Walsh's conformal map onto lemniscatic domains for polynomial pre-images I</atitle><jtitle>arXiv.org</jtitle><date>2022-08-03</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We consider Walsh's conformal map from the exterior of a compact set \(E \subseteq \mathbb{C}\) onto a lemniscatic domain. If \(E\) is simply connected, the lemniscatic domain is the exterior of a circle, while if \(E\) has several components, the lemniscatic domain is the exterior of a generalized lemniscate and is determined by the logarithmic capacity of \(E\) and by the exponents and centers of the generalized lemniscate. For general \(E\), we characterize the exponents in terms of the Green's function of \(E^c\). Under additional symmetry conditions on \(E\), we also locate the centers of the lemniscatic domain. For polynomial pre-images \(E = P^{-1}(\Omega)\) of a simply-connected infinite compact set \(\Omega\), we explicitly determine the exponents in the lemniscatic domain and derive a set of equations to determine the centers of the lemniscatic domain. Finally, we present several examples where we explicitly obtain the exponents and centers of the lemniscatic domain, as well as the conformal map.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2203.14716</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2644586564 |
source | Publicly Available Content Database |
subjects | Conformal mapping Domains Exponents Green's functions Polynomials |
title | Walsh's conformal map onto lemniscatic domains for polynomial pre-images I |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Walsh's%20conformal%20map%20onto%20lemniscatic%20domains%20for%20polynomial%20pre-images%20I&rft.jtitle=arXiv.org&rft.au=Schiefermayr,%20Klaus&rft.date=2022-08-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2203.14716&rft_dat=%3Cproquest%3E2644586564%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-3899315398dfe5a5e67c5c70d579a0f22f728c7a412eec13b639fd750a28e31a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2644586564&rft_id=info:pmid/&rfr_iscdi=true |