Loading…
Role of the chiral spin configuration in field-free spin-orbit torque-induced magnetization switching by a locally injected spin current
For deterministic magnetization switching by spin-orbit torque (SOT) in a perpendicular magnetic anisotropy system, an additional in-plane direction magnetic field is essential for deterministic switching by breaking the magnetization symmetry. Realizing chirality in a magnetic ordering system can b...
Saved in:
Published in: | arXiv.org 2022-03 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For deterministic magnetization switching by spin-orbit torque (SOT) in a perpendicular magnetic anisotropy system, an additional in-plane direction magnetic field is essential for deterministic switching by breaking the magnetization symmetry. Realizing chirality in a magnetic ordering system can be one approach for achieving asymmetry in the lateral direction for field-free magnetization switching. However, systematic analysis of the influence of the chiral spin system on deterministic switching is still scarce. In this report, the achievement of field-free SOT-induced magnetization switching by using a chiral spin configuration is investigated by experiments and micromagnetic simulations. We designed a system in which only part of the ferromagnetic layer overlaps with the heavy metal layer in the Pt/Co/MgO structure. Therefore, a spin current is exerted only on a local area of the ferromagnetic layer, which results in a Néel-type chiral spin configuration. The induced chiral spin configuration can be stabilized (or destabilized) depending on the sign of the interfacial Dzyaloshinskii-Moriya interaction of the system. The stabilized spin configuration plays a crucial role in the deterministic switching in zero field. We expect our findings to widen the perspective on chirality-based all-electrical SOT device fabrication. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2203.14429 |