Loading…
The maximum average connectivity among all orientations of a graph
For distinct vertices u and v in a graph G , the connectivity between u and v , denoted κ G ( u , v ) , is the maximum number of internally disjoint u – v paths in G . The average connectivity of G , denoted κ ¯ ( G ) , is the average of κ G ( u , v ) taken over all unordered pairs of distinct verti...
Saved in:
Published in: | Journal of combinatorial optimization 2022-04, Vol.43 (3), p.543-570 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-54e14ceb0b2d06d90de9c0a58772bc63bf9eb5d4ee32ed2fae0f3ab726a1329d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-54e14ceb0b2d06d90de9c0a58772bc63bf9eb5d4ee32ed2fae0f3ab726a1329d3 |
container_end_page | 570 |
container_issue | 3 |
container_start_page | 543 |
container_title | Journal of combinatorial optimization |
container_volume | 43 |
creator | Casablanca, Rocío M. Dankelmann, Peter Goddard, Wayne Mol, Lucas Oellermann, Ortrud |
description | For distinct vertices
u
and
v
in a graph
G
, the
connectivity
between
u
and
v
, denoted
κ
G
(
u
,
v
)
, is the maximum number of internally disjoint
u
–
v
paths in
G
. The
average connectivity
of
G
, denoted
κ
¯
(
G
)
,
is the average of
κ
G
(
u
,
v
)
taken over all unordered pairs of distinct vertices
u
,
v
of
G
. Analogously, for a directed graph
D
, the
connectivity
from
u
to
v
, denoted
κ
D
(
u
,
v
)
, is the maximum number of internally disjoint directed
u
–
v
paths in
D
. The
average connectivity
of
D
, denoted
κ
¯
(
D
)
, is the average of
κ
D
(
u
,
v
)
taken over all ordered pairs of distinct vertices
u
,
v
of
D
. An
orientation
of a graph
G
is a directed graph obtained by assigning a direction to every edge of
G
. For a graph
G
, let
κ
¯
max
(
G
)
denote the maximum average connectivity among all orientations of
G
. In this paper we obtain bounds for
κ
¯
max
(
G
)
and for the ratio
κ
¯
max
(
G
)
/
κ
¯
(
G
)
for all graphs
G
of a given order and in a given class of graphs. Whenever possible, we demonstrate sharpness of these bounds. This problem had previously been studied for trees. We focus on the classes of cubic 3-connected graphs, minimally 2-connected graphs, 2-trees, and maximal outerplanar graphs. |
doi_str_mv | 10.1007/s10878-021-00789-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645182903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645182903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-54e14ceb0b2d06d90de9c0a58772bc63bf9eb5d4ee32ed2fae0f3ab726a1329d3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA19GTpE3TSx1-wcCbeR3S9rTrWJuZtMPt1xut4J1X5z3wfsBDyDWHWw6Q3QUOOtMMBGfx1Tk7npAZTzPJhNbqNGqpBVM5pOfkIoQNAESdzMjDao20s59tN3bU7tHbBmnp-h7Lod23w4HazvUNtdstdb7FfrBD6_pAXU0tbbzdrS_JWW23Aa9-75y8Pz2uFi9s-fb8urhfslIqObA0QZ6UWEAhKlBVDhXmJdhUZ5koSiWLOscirRJEKbAStUWopS0yoSyXIq_knNxMvTvvPkYMg9m40fdx0giVpFyLHGR0iclVeheCx9rsfNtZfzAczDcrM7EykZX5YWWOMSSnUIjmvkH_V_1P6gs3h23R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645182903</pqid></control><display><type>article</type><title>The maximum average connectivity among all orientations of a graph</title><source>Springer Link</source><creator>Casablanca, Rocío M. ; Dankelmann, Peter ; Goddard, Wayne ; Mol, Lucas ; Oellermann, Ortrud</creator><creatorcontrib>Casablanca, Rocío M. ; Dankelmann, Peter ; Goddard, Wayne ; Mol, Lucas ; Oellermann, Ortrud</creatorcontrib><description>For distinct vertices
u
and
v
in a graph
G
, the
connectivity
between
u
and
v
, denoted
κ
G
(
u
,
v
)
, is the maximum number of internally disjoint
u
–
v
paths in
G
. The
average connectivity
of
G
, denoted
κ
¯
(
G
)
,
is the average of
κ
G
(
u
,
v
)
taken over all unordered pairs of distinct vertices
u
,
v
of
G
. Analogously, for a directed graph
D
, the
connectivity
from
u
to
v
, denoted
κ
D
(
u
,
v
)
, is the maximum number of internally disjoint directed
u
–
v
paths in
D
. The
average connectivity
of
D
, denoted
κ
¯
(
D
)
, is the average of
κ
D
(
u
,
v
)
taken over all ordered pairs of distinct vertices
u
,
v
of
D
. An
orientation
of a graph
G
is a directed graph obtained by assigning a direction to every edge of
G
. For a graph
G
, let
κ
¯
max
(
G
)
denote the maximum average connectivity among all orientations of
G
. In this paper we obtain bounds for
κ
¯
max
(
G
)
and for the ratio
κ
¯
max
(
G
)
/
κ
¯
(
G
)
for all graphs
G
of a given order and in a given class of graphs. Whenever possible, we demonstrate sharpness of these bounds. This problem had previously been studied for trees. We focus on the classes of cubic 3-connected graphs, minimally 2-connected graphs, 2-trees, and maximal outerplanar graphs.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-021-00789-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apexes ; Combinatorics ; Connectivity ; Convex and Discrete Geometry ; Graph theory ; Graphs ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Theory of Computation ; Trees (mathematics)</subject><ispartof>Journal of combinatorial optimization, 2022-04, Vol.43 (3), p.543-570</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-54e14ceb0b2d06d90de9c0a58772bc63bf9eb5d4ee32ed2fae0f3ab726a1329d3</citedby><cites>FETCH-LOGICAL-c363t-54e14ceb0b2d06d90de9c0a58772bc63bf9eb5d4ee32ed2fae0f3ab726a1329d3</cites><orcidid>0000-0002-4295-0632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Casablanca, Rocío M.</creatorcontrib><creatorcontrib>Dankelmann, Peter</creatorcontrib><creatorcontrib>Goddard, Wayne</creatorcontrib><creatorcontrib>Mol, Lucas</creatorcontrib><creatorcontrib>Oellermann, Ortrud</creatorcontrib><title>The maximum average connectivity among all orientations of a graph</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>For distinct vertices
u
and
v
in a graph
G
, the
connectivity
between
u
and
v
, denoted
κ
G
(
u
,
v
)
, is the maximum number of internally disjoint
u
–
v
paths in
G
. The
average connectivity
of
G
, denoted
κ
¯
(
G
)
,
is the average of
κ
G
(
u
,
v
)
taken over all unordered pairs of distinct vertices
u
,
v
of
G
. Analogously, for a directed graph
D
, the
connectivity
from
u
to
v
, denoted
κ
D
(
u
,
v
)
, is the maximum number of internally disjoint directed
u
–
v
paths in
D
. The
average connectivity
of
D
, denoted
κ
¯
(
D
)
, is the average of
κ
D
(
u
,
v
)
taken over all ordered pairs of distinct vertices
u
,
v
of
D
. An
orientation
of a graph
G
is a directed graph obtained by assigning a direction to every edge of
G
. For a graph
G
, let
κ
¯
max
(
G
)
denote the maximum average connectivity among all orientations of
G
. In this paper we obtain bounds for
κ
¯
max
(
G
)
and for the ratio
κ
¯
max
(
G
)
/
κ
¯
(
G
)
for all graphs
G
of a given order and in a given class of graphs. Whenever possible, we demonstrate sharpness of these bounds. This problem had previously been studied for trees. We focus on the classes of cubic 3-connected graphs, minimally 2-connected graphs, 2-trees, and maximal outerplanar graphs.</description><subject>Apexes</subject><subject>Combinatorics</subject><subject>Connectivity</subject><subject>Convex and Discrete Geometry</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Theory of Computation</subject><subject>Trees (mathematics)</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wKuA19GTpE3TSx1-wcCbeR3S9rTrWJuZtMPt1xut4J1X5z3wfsBDyDWHWw6Q3QUOOtMMBGfx1Tk7npAZTzPJhNbqNGqpBVM5pOfkIoQNAESdzMjDao20s59tN3bU7tHbBmnp-h7Lod23w4HazvUNtdstdb7FfrBD6_pAXU0tbbzdrS_JWW23Aa9-75y8Pz2uFi9s-fb8urhfslIqObA0QZ6UWEAhKlBVDhXmJdhUZ5koSiWLOscirRJEKbAStUWopS0yoSyXIq_knNxMvTvvPkYMg9m40fdx0giVpFyLHGR0iclVeheCx9rsfNtZfzAczDcrM7EykZX5YWWOMSSnUIjmvkH_V_1P6gs3h23R</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Casablanca, Rocío M.</creator><creator>Dankelmann, Peter</creator><creator>Goddard, Wayne</creator><creator>Mol, Lucas</creator><creator>Oellermann, Ortrud</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4295-0632</orcidid></search><sort><creationdate>20220401</creationdate><title>The maximum average connectivity among all orientations of a graph</title><author>Casablanca, Rocío M. ; Dankelmann, Peter ; Goddard, Wayne ; Mol, Lucas ; Oellermann, Ortrud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-54e14ceb0b2d06d90de9c0a58772bc63bf9eb5d4ee32ed2fae0f3ab726a1329d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Combinatorics</topic><topic>Connectivity</topic><topic>Convex and Discrete Geometry</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Theory of Computation</topic><topic>Trees (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casablanca, Rocío M.</creatorcontrib><creatorcontrib>Dankelmann, Peter</creatorcontrib><creatorcontrib>Goddard, Wayne</creatorcontrib><creatorcontrib>Mol, Lucas</creatorcontrib><creatorcontrib>Oellermann, Ortrud</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casablanca, Rocío M.</au><au>Dankelmann, Peter</au><au>Goddard, Wayne</au><au>Mol, Lucas</au><au>Oellermann, Ortrud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The maximum average connectivity among all orientations of a graph</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>43</volume><issue>3</issue><spage>543</spage><epage>570</epage><pages>543-570</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>For distinct vertices
u
and
v
in a graph
G
, the
connectivity
between
u
and
v
, denoted
κ
G
(
u
,
v
)
, is the maximum number of internally disjoint
u
–
v
paths in
G
. The
average connectivity
of
G
, denoted
κ
¯
(
G
)
,
is the average of
κ
G
(
u
,
v
)
taken over all unordered pairs of distinct vertices
u
,
v
of
G
. Analogously, for a directed graph
D
, the
connectivity
from
u
to
v
, denoted
κ
D
(
u
,
v
)
, is the maximum number of internally disjoint directed
u
–
v
paths in
D
. The
average connectivity
of
D
, denoted
κ
¯
(
D
)
, is the average of
κ
D
(
u
,
v
)
taken over all ordered pairs of distinct vertices
u
,
v
of
D
. An
orientation
of a graph
G
is a directed graph obtained by assigning a direction to every edge of
G
. For a graph
G
, let
κ
¯
max
(
G
)
denote the maximum average connectivity among all orientations of
G
. In this paper we obtain bounds for
κ
¯
max
(
G
)
and for the ratio
κ
¯
max
(
G
)
/
κ
¯
(
G
)
for all graphs
G
of a given order and in a given class of graphs. Whenever possible, we demonstrate sharpness of these bounds. This problem had previously been studied for trees. We focus on the classes of cubic 3-connected graphs, minimally 2-connected graphs, 2-trees, and maximal outerplanar graphs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-021-00789-z</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-4295-0632</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-6905 |
ispartof | Journal of combinatorial optimization, 2022-04, Vol.43 (3), p.543-570 |
issn | 1382-6905 1573-2886 |
language | eng |
recordid | cdi_proquest_journals_2645182903 |
source | Springer Link |
subjects | Apexes Combinatorics Connectivity Convex and Discrete Geometry Graph theory Graphs Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Theory of Computation Trees (mathematics) |
title | The maximum average connectivity among all orientations of a graph |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20maximum%20average%20connectivity%20among%20all%20orientations%20of%20a%20graph&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Casablanca,%20Roc%C3%ADo%20M.&rft.date=2022-04-01&rft.volume=43&rft.issue=3&rft.spage=543&rft.epage=570&rft.pages=543-570&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-021-00789-z&rft_dat=%3Cproquest_cross%3E2645182903%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-54e14ceb0b2d06d90de9c0a58772bc63bf9eb5d4ee32ed2fae0f3ab726a1329d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645182903&rft_id=info:pmid/&rfr_iscdi=true |