Loading…

Forecasting tropospheric wet delay using LSTM neural network

Tropospheric wet delay is a critical factor in radio communication. Accurate estimation of the wet delay is difficult due to the variability in water vapour. In this study, we aim to model and predict tropospheric wet delay over four tropical locations using Long Short-Term Memory (LSTM) neural netw...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Earth and environmental science 2022-03, Vol.993 (1), p.12024
Main Authors: Ogunjo, S.T., Dada, J.B., Ajayi, O.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3224-e50ba45f043d9f67d38a9091c30a0a6fcf97a1a0952daa9c18aa7435852925413
cites cdi_FETCH-LOGICAL-c3224-e50ba45f043d9f67d38a9091c30a0a6fcf97a1a0952daa9c18aa7435852925413
container_end_page
container_issue 1
container_start_page 12024
container_title IOP conference series. Earth and environmental science
container_volume 993
creator Ogunjo, S.T.
Dada, J.B.
Ajayi, O.J.
description Tropospheric wet delay is a critical factor in radio communication. Accurate estimation of the wet delay is difficult due to the variability in water vapour. In this study, we aim to model and predict tropospheric wet delay over four tropical locations using Long Short-Term Memory (LSTM) neural network. Results obtained in this study showed RMSE and MAE within the range 18.96–21.16 and 14.08–16.38 respectively. LSTM model was able to capture the different regimes of wet delays in each of the locations under consideration. This approach can significantly improve link budget and planning within tropical regions.
doi_str_mv 10.1088/1755-1315/993/1/012024
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2645193915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645193915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3224-e50ba45f043d9f67d38a9091c30a0a6fcf97a1a0952daa9c18aa7435852925413</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4MoOKdfQQq--FKbS5q2AV9kbFOY-LD5HM420c651KRl7NubUpkIgk93cL_73_Ej5BLoDdCiSCAXIgYOIpGSJ5BQYJSlR2R0GBwfepqfkjPv15RmecrliNzOrNMl-rbevkats431zZt2dRntdBtVeoP7qPP9cLFcPUZb3TnchNLurHs_JycGN15ffNcxeZ5NV5P7ePE0f5jcLeKSM5bGWtAXTIWhKa-kyfKKFyiphJJTpJiZ0sgcAakUrEKUJRSI4TtRCCaZSIGPydWQ2zj72WnfqrXt3DacVCxLBUguQQQqG6jSWe-dNqpx9Qe6vQKqelOql6B6ISqYUqAGU2HxelisbfOTPJ0uf2GqqUxA2R_oP_lfi112Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645193915</pqid></control><display><type>article</type><title>Forecasting tropospheric wet delay using LSTM neural network</title><source>Publicly Available Content Database</source><creator>Ogunjo, S.T. ; Dada, J.B. ; Ajayi, O.J.</creator><creatorcontrib>Ogunjo, S.T. ; Dada, J.B. ; Ajayi, O.J.</creatorcontrib><description>Tropospheric wet delay is a critical factor in radio communication. Accurate estimation of the wet delay is difficult due to the variability in water vapour. In this study, we aim to model and predict tropospheric wet delay over four tropical locations using Long Short-Term Memory (LSTM) neural network. Results obtained in this study showed RMSE and MAE within the range 18.96–21.16 and 14.08–16.38 respectively. LSTM model was able to capture the different regimes of wet delays in each of the locations under consideration. This approach can significantly improve link budget and planning within tropical regions.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/993/1/012024</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Communication ; Delay ; Long short-term memory ; LSTM ; Neural network ; Neural networks ; Radio ; Radio communications ; Tropical environment ; Tropical environments ; Troposphere ; Water vapor ; Wet delay</subject><ispartof>IOP conference series. Earth and environmental science, 2022-03, Vol.993 (1), p.12024</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3224-e50ba45f043d9f67d38a9091c30a0a6fcf97a1a0952daa9c18aa7435852925413</citedby><cites>FETCH-LOGICAL-c3224-e50ba45f043d9f67d38a9091c30a0a6fcf97a1a0952daa9c18aa7435852925413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2645193915?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Ogunjo, S.T.</creatorcontrib><creatorcontrib>Dada, J.B.</creatorcontrib><creatorcontrib>Ajayi, O.J.</creatorcontrib><title>Forecasting tropospheric wet delay using LSTM neural network</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>Tropospheric wet delay is a critical factor in radio communication. Accurate estimation of the wet delay is difficult due to the variability in water vapour. In this study, we aim to model and predict tropospheric wet delay over four tropical locations using Long Short-Term Memory (LSTM) neural network. Results obtained in this study showed RMSE and MAE within the range 18.96–21.16 and 14.08–16.38 respectively. LSTM model was able to capture the different regimes of wet delays in each of the locations under consideration. This approach can significantly improve link budget and planning within tropical regions.</description><subject>Communication</subject><subject>Delay</subject><subject>Long short-term memory</subject><subject>LSTM</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Radio</subject><subject>Radio communications</subject><subject>Tropical environment</subject><subject>Tropical environments</subject><subject>Troposphere</subject><subject>Water vapor</subject><subject>Wet delay</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkFFLwzAQx4MoOKdfQQq--FKbS5q2AV9kbFOY-LD5HM420c651KRl7NubUpkIgk93cL_73_Ej5BLoDdCiSCAXIgYOIpGSJ5BQYJSlR2R0GBwfepqfkjPv15RmecrliNzOrNMl-rbevkats431zZt2dRntdBtVeoP7qPP9cLFcPUZb3TnchNLurHs_JycGN15ffNcxeZ5NV5P7ePE0f5jcLeKSM5bGWtAXTIWhKa-kyfKKFyiphJJTpJiZ0sgcAakUrEKUJRSI4TtRCCaZSIGPydWQ2zj72WnfqrXt3DacVCxLBUguQQQqG6jSWe-dNqpx9Qe6vQKqelOql6B6ISqYUqAGU2HxelisbfOTPJ0uf2GqqUxA2R_oP_lfi112Aw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Ogunjo, S.T.</creator><creator>Dada, J.B.</creator><creator>Ajayi, O.J.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20220301</creationdate><title>Forecasting tropospheric wet delay using LSTM neural network</title><author>Ogunjo, S.T. ; Dada, J.B. ; Ajayi, O.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3224-e50ba45f043d9f67d38a9091c30a0a6fcf97a1a0952daa9c18aa7435852925413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Communication</topic><topic>Delay</topic><topic>Long short-term memory</topic><topic>LSTM</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Radio</topic><topic>Radio communications</topic><topic>Tropical environment</topic><topic>Tropical environments</topic><topic>Troposphere</topic><topic>Water vapor</topic><topic>Wet delay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogunjo, S.T.</creatorcontrib><creatorcontrib>Dada, J.B.</creatorcontrib><creatorcontrib>Ajayi, O.J.</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogunjo, S.T.</au><au>Dada, J.B.</au><au>Ajayi, O.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting tropospheric wet delay using LSTM neural network</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>993</volume><issue>1</issue><spage>12024</spage><pages>12024-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Tropospheric wet delay is a critical factor in radio communication. Accurate estimation of the wet delay is difficult due to the variability in water vapour. In this study, we aim to model and predict tropospheric wet delay over four tropical locations using Long Short-Term Memory (LSTM) neural network. Results obtained in this study showed RMSE and MAE within the range 18.96–21.16 and 14.08–16.38 respectively. LSTM model was able to capture the different regimes of wet delays in each of the locations under consideration. This approach can significantly improve link budget and planning within tropical regions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/993/1/012024</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2022-03, Vol.993 (1), p.12024
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2645193915
source Publicly Available Content Database
subjects Communication
Delay
Long short-term memory
LSTM
Neural network
Neural networks
Radio
Radio communications
Tropical environment
Tropical environments
Troposphere
Water vapor
Wet delay
title Forecasting tropospheric wet delay using LSTM neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20tropospheric%20wet%20delay%20using%20LSTM%20neural%20network&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Ogunjo,%20S.T.&rft.date=2022-03-01&rft.volume=993&rft.issue=1&rft.spage=12024&rft.pages=12024-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/993/1/012024&rft_dat=%3Cproquest_iop_j%3E2645193915%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3224-e50ba45f043d9f67d38a9091c30a0a6fcf97a1a0952daa9c18aa7435852925413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645193915&rft_id=info:pmid/&rfr_iscdi=true