Loading…
Forecasting tropospheric wet delay using LSTM neural network
Tropospheric wet delay is a critical factor in radio communication. Accurate estimation of the wet delay is difficult due to the variability in water vapour. In this study, we aim to model and predict tropospheric wet delay over four tropical locations using Long Short-Term Memory (LSTM) neural netw...
Saved in:
Published in: | IOP conference series. Earth and environmental science 2022-03, Vol.993 (1), p.12024 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3224-e50ba45f043d9f67d38a9091c30a0a6fcf97a1a0952daa9c18aa7435852925413 |
---|---|
cites | cdi_FETCH-LOGICAL-c3224-e50ba45f043d9f67d38a9091c30a0a6fcf97a1a0952daa9c18aa7435852925413 |
container_end_page | |
container_issue | 1 |
container_start_page | 12024 |
container_title | IOP conference series. Earth and environmental science |
container_volume | 993 |
creator | Ogunjo, S.T. Dada, J.B. Ajayi, O.J. |
description | Tropospheric wet delay is a critical factor in radio communication. Accurate estimation of the wet delay is difficult due to the variability in water vapour. In this study, we aim to model and predict tropospheric wet delay over four tropical locations using Long Short-Term Memory (LSTM) neural network. Results obtained in this study showed RMSE and MAE within the range 18.96–21.16 and 14.08–16.38 respectively. LSTM model was able to capture the different regimes of wet delays in each of the locations under consideration. This approach can significantly improve link budget and planning within tropical regions. |
doi_str_mv | 10.1088/1755-1315/993/1/012024 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2645193915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645193915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3224-e50ba45f043d9f67d38a9091c30a0a6fcf97a1a0952daa9c18aa7435852925413</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4MoOKdfQQq--FKbS5q2AV9kbFOY-LD5HM420c651KRl7NubUpkIgk93cL_73_Ej5BLoDdCiSCAXIgYOIpGSJ5BQYJSlR2R0GBwfepqfkjPv15RmecrliNzOrNMl-rbevkats431zZt2dRntdBtVeoP7qPP9cLFcPUZb3TnchNLurHs_JycGN15ffNcxeZ5NV5P7ePE0f5jcLeKSM5bGWtAXTIWhKa-kyfKKFyiphJJTpJiZ0sgcAakUrEKUJRSI4TtRCCaZSIGPydWQ2zj72WnfqrXt3DacVCxLBUguQQQqG6jSWe-dNqpx9Qe6vQKqelOql6B6ISqYUqAGU2HxelisbfOTPJ0uf2GqqUxA2R_oP_lfi112Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645193915</pqid></control><display><type>article</type><title>Forecasting tropospheric wet delay using LSTM neural network</title><source>Publicly Available Content Database</source><creator>Ogunjo, S.T. ; Dada, J.B. ; Ajayi, O.J.</creator><creatorcontrib>Ogunjo, S.T. ; Dada, J.B. ; Ajayi, O.J.</creatorcontrib><description>Tropospheric wet delay is a critical factor in radio communication. Accurate estimation of the wet delay is difficult due to the variability in water vapour. In this study, we aim to model and predict tropospheric wet delay over four tropical locations using Long Short-Term Memory (LSTM) neural network. Results obtained in this study showed RMSE and MAE within the range 18.96–21.16 and 14.08–16.38 respectively. LSTM model was able to capture the different regimes of wet delays in each of the locations under consideration. This approach can significantly improve link budget and planning within tropical regions.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/993/1/012024</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Communication ; Delay ; Long short-term memory ; LSTM ; Neural network ; Neural networks ; Radio ; Radio communications ; Tropical environment ; Tropical environments ; Troposphere ; Water vapor ; Wet delay</subject><ispartof>IOP conference series. Earth and environmental science, 2022-03, Vol.993 (1), p.12024</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3224-e50ba45f043d9f67d38a9091c30a0a6fcf97a1a0952daa9c18aa7435852925413</citedby><cites>FETCH-LOGICAL-c3224-e50ba45f043d9f67d38a9091c30a0a6fcf97a1a0952daa9c18aa7435852925413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2645193915?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Ogunjo, S.T.</creatorcontrib><creatorcontrib>Dada, J.B.</creatorcontrib><creatorcontrib>Ajayi, O.J.</creatorcontrib><title>Forecasting tropospheric wet delay using LSTM neural network</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>Tropospheric wet delay is a critical factor in radio communication. Accurate estimation of the wet delay is difficult due to the variability in water vapour. In this study, we aim to model and predict tropospheric wet delay over four tropical locations using Long Short-Term Memory (LSTM) neural network. Results obtained in this study showed RMSE and MAE within the range 18.96–21.16 and 14.08–16.38 respectively. LSTM model was able to capture the different regimes of wet delays in each of the locations under consideration. This approach can significantly improve link budget and planning within tropical regions.</description><subject>Communication</subject><subject>Delay</subject><subject>Long short-term memory</subject><subject>LSTM</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Radio</subject><subject>Radio communications</subject><subject>Tropical environment</subject><subject>Tropical environments</subject><subject>Troposphere</subject><subject>Water vapor</subject><subject>Wet delay</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkFFLwzAQx4MoOKdfQQq--FKbS5q2AV9kbFOY-LD5HM420c651KRl7NubUpkIgk93cL_73_Ej5BLoDdCiSCAXIgYOIpGSJ5BQYJSlR2R0GBwfepqfkjPv15RmecrliNzOrNMl-rbevkats431zZt2dRntdBtVeoP7qPP9cLFcPUZb3TnchNLurHs_JycGN15ffNcxeZ5NV5P7ePE0f5jcLeKSM5bGWtAXTIWhKa-kyfKKFyiphJJTpJiZ0sgcAakUrEKUJRSI4TtRCCaZSIGPydWQ2zj72WnfqrXt3DacVCxLBUguQQQqG6jSWe-dNqpx9Qe6vQKqelOql6B6ISqYUqAGU2HxelisbfOTPJ0uf2GqqUxA2R_oP_lfi112Aw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Ogunjo, S.T.</creator><creator>Dada, J.B.</creator><creator>Ajayi, O.J.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20220301</creationdate><title>Forecasting tropospheric wet delay using LSTM neural network</title><author>Ogunjo, S.T. ; Dada, J.B. ; Ajayi, O.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3224-e50ba45f043d9f67d38a9091c30a0a6fcf97a1a0952daa9c18aa7435852925413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Communication</topic><topic>Delay</topic><topic>Long short-term memory</topic><topic>LSTM</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Radio</topic><topic>Radio communications</topic><topic>Tropical environment</topic><topic>Tropical environments</topic><topic>Troposphere</topic><topic>Water vapor</topic><topic>Wet delay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogunjo, S.T.</creatorcontrib><creatorcontrib>Dada, J.B.</creatorcontrib><creatorcontrib>Ajayi, O.J.</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogunjo, S.T.</au><au>Dada, J.B.</au><au>Ajayi, O.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting tropospheric wet delay using LSTM neural network</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>993</volume><issue>1</issue><spage>12024</spage><pages>12024-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Tropospheric wet delay is a critical factor in radio communication. Accurate estimation of the wet delay is difficult due to the variability in water vapour. In this study, we aim to model and predict tropospheric wet delay over four tropical locations using Long Short-Term Memory (LSTM) neural network. Results obtained in this study showed RMSE and MAE within the range 18.96–21.16 and 14.08–16.38 respectively. LSTM model was able to capture the different regimes of wet delays in each of the locations under consideration. This approach can significantly improve link budget and planning within tropical regions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/993/1/012024</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-1307 |
ispartof | IOP conference series. Earth and environmental science, 2022-03, Vol.993 (1), p.12024 |
issn | 1755-1307 1755-1315 |
language | eng |
recordid | cdi_proquest_journals_2645193915 |
source | Publicly Available Content Database |
subjects | Communication Delay Long short-term memory LSTM Neural network Neural networks Radio Radio communications Tropical environment Tropical environments Troposphere Water vapor Wet delay |
title | Forecasting tropospheric wet delay using LSTM neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20tropospheric%20wet%20delay%20using%20LSTM%20neural%20network&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Ogunjo,%20S.T.&rft.date=2022-03-01&rft.volume=993&rft.issue=1&rft.spage=12024&rft.pages=12024-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/993/1/012024&rft_dat=%3Cproquest_iop_j%3E2645193915%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3224-e50ba45f043d9f67d38a9091c30a0a6fcf97a1a0952daa9c18aa7435852925413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645193915&rft_id=info:pmid/&rfr_iscdi=true |