Loading…
Long-term Characterization of Urban PM10 in Hungary
Over urban areas in Hungary, the annual average PM10 concentrations are not frequently higher than 40 µg m–3. Despite the mitigation efforts of the local governments, the annual number of exceedances of the daily limit of 50 µg m–3 is higher than what is outlined in EU Directive No 2008/50/EC. The g...
Saved in:
Published in: | Aerosol and air quality research 2021-10, Vol.21 (10), p.210048 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Over urban areas in Hungary, the annual average PM10 concentrations are not frequently higher than 40 µg m–3. Despite the mitigation efforts of the local governments, the annual number of exceedances of the daily limit of 50 µg m–3 is higher than what is outlined in EU Directive No 2008/50/EC. The goal of the present study is to assess the characteristics of the temporal (annual, seasonal, daily) variations in PM10 concentrations in selected Hungarian cities with large populations, where most of the exceedances have been reported. The impacts of meteorological conditions on the measured PM10 concentrations and their temporal variations are also evaluated. An important aspect of studying the trends of air pollution is that the tendencies depend not only on the emissions of certain pollutants but also on the meteorological conditions in the area of interest. To analyse emission-related trends, the meteorological signal must be removed from the data series. In this study, the Kolmogorov-Zurbenko (KZ) filter was used for this type of trend separation. Moreover, multiple nonlinear regression analysis was used to find relationships between the PM10 concentration and several meteorological parameters. The goal of this analysis is to estimate the expected daily mean PM10 concentration values. The results of this analysis demonstrate that the regression equation can provide an adequate method for PM pollution forecasting. In addition to the hourly PM10 concentrations and basic meteorological data, global radiation and boundary layer height were considered in the characterization process. |
---|---|
ISSN: | 1680-8584 2071-1409 |
DOI: | 10.4209/aaqr.210048 |