Loading…

Control Systems of Variable Structure. Attainability Sets and Integral Funnels

We consider a nonlinear control system in a finite-dimensional Euclidean space and on a finite time interval. The system varies over some less time interval, and the differential equation describing the system is replaced with some other differential equation. As a result, a new control system appea...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-02, Vol.260 (6), p.820-832
Main Authors: Ushakov, V. N., Ukhobotov, V. I., Ushakov, A. V., Izmest’ev, I. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3681-19637968ebb08a4e20b25d59bcbc6ce32209b6f117a7af1e136d5b60b409e8ed3
container_end_page 832
container_issue 6
container_start_page 820
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 260
creator Ushakov, V. N.
Ukhobotov, V. I.
Ushakov, A. V.
Izmest’ev, I. V.
description We consider a nonlinear control system in a finite-dimensional Euclidean space and on a finite time interval. The system varies over some less time interval, and the differential equation describing the system is replaced with some other differential equation. As a result, a new control system appears on the initial time interval. We study how much the integral funnel of the system is changed under such a replacement. We obtain the upper estimate for the Hausdorff distance between the integral funnels of differential inclusions related to the initial and varied systems.
doi_str_mv 10.1007/s10958-022-05730-1
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2645508581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706409435</galeid><sourcerecordid>A706409435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3681-19637968ebb08a4e20b25d59bcbc6ce32209b6f117a7af1e136d5b60b409e8ed3</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhpfSQNKkfyAnQU89yNHH6mOPxjStIaRQt70KSTu7KKy1qaSF-t9XqQvBYIoOGsTzzDB6m-aWkhUlRN1lSjqhMWEME6E4wfRNc0VrhbXqxNtaE8Uw56q9bN7l_ESqJDW_ah43cyxpntDukAvsM5oH9NOmYN0EaFfS4suSYIXWpdgQrQtTKAe0g5KRjT3axgJjshO6X2KEKd80F4OdMrz_d183P-4_fd98wQ9fP2836wfsudQU005y1UkNzhFtW2DEMdGLznnnpQfOGOmcHChVVtmBAuWyF04S15IONPT8uvlw7Puc5l8L5GKe5iXFOtIw2QpBtND0lRrtBCbEYS7J-n3I3qwVkbVZy0Wl8BlqhAh1sTnCEOrzCb86w9fTwz74s8LHE6EyBX6X0S45m-3u2ynLjqxPc84JBvOcwt6mg6HEvERtjlGbGrX5G7V52ZMfpVzhOEJ6_Y3_WH8Aqpioew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645508581</pqid></control><display><type>article</type><title>Control Systems of Variable Structure. Attainability Sets and Integral Funnels</title><source>Springer Nature</source><creator>Ushakov, V. N. ; Ukhobotov, V. I. ; Ushakov, A. V. ; Izmest’ev, I. V.</creator><creatorcontrib>Ushakov, V. N. ; Ukhobotov, V. I. ; Ushakov, A. V. ; Izmest’ev, I. V.</creatorcontrib><description>We consider a nonlinear control system in a finite-dimensional Euclidean space and on a finite time interval. The system varies over some less time interval, and the differential equation describing the system is replaced with some other differential equation. As a result, a new control system appears on the initial time interval. We study how much the integral funnel of the system is changed under such a replacement. We obtain the upper estimate for the Hausdorff distance between the integral funnels of differential inclusions related to the initial and varied systems.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-022-05730-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Control systems ; Differential equations ; Euclidean geometry ; Euclidean space ; Funnels ; Inclusions ; Mathematics ; Mathematics and Statistics ; Metric space ; Nonlinear control ; Variable structure control</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2022-02, Vol.260 (6), p.820-832</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3681-19637968ebb08a4e20b25d59bcbc6ce32209b6f117a7af1e136d5b60b409e8ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ushakov, V. N.</creatorcontrib><creatorcontrib>Ukhobotov, V. I.</creatorcontrib><creatorcontrib>Ushakov, A. V.</creatorcontrib><creatorcontrib>Izmest’ev, I. V.</creatorcontrib><title>Control Systems of Variable Structure. Attainability Sets and Integral Funnels</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider a nonlinear control system in a finite-dimensional Euclidean space and on a finite time interval. The system varies over some less time interval, and the differential equation describing the system is replaced with some other differential equation. As a result, a new control system appears on the initial time interval. We study how much the integral funnel of the system is changed under such a replacement. We obtain the upper estimate for the Hausdorff distance between the integral funnels of differential inclusions related to the initial and varied systems.</description><subject>Control systems</subject><subject>Differential equations</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Funnels</subject><subject>Inclusions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Nonlinear control</subject><subject>Variable structure control</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rGzEQhpfSQNKkfyAnQU89yNHH6mOPxjStIaRQt70KSTu7KKy1qaSF-t9XqQvBYIoOGsTzzDB6m-aWkhUlRN1lSjqhMWEME6E4wfRNc0VrhbXqxNtaE8Uw56q9bN7l_ESqJDW_ah43cyxpntDukAvsM5oH9NOmYN0EaFfS4suSYIXWpdgQrQtTKAe0g5KRjT3axgJjshO6X2KEKd80F4OdMrz_d183P-4_fd98wQ9fP2836wfsudQU005y1UkNzhFtW2DEMdGLznnnpQfOGOmcHChVVtmBAuWyF04S15IONPT8uvlw7Puc5l8L5GKe5iXFOtIw2QpBtND0lRrtBCbEYS7J-n3I3qwVkbVZy0Wl8BlqhAh1sTnCEOrzCb86w9fTwz74s8LHE6EyBX6X0S45m-3u2ynLjqxPc84JBvOcwt6mg6HEvERtjlGbGrX5G7V52ZMfpVzhOEJ6_Y3_WH8Aqpioew</recordid><startdate>20220202</startdate><enddate>20220202</enddate><creator>Ushakov, V. N.</creator><creator>Ukhobotov, V. I.</creator><creator>Ushakov, A. V.</creator><creator>Izmest’ev, I. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20220202</creationdate><title>Control Systems of Variable Structure. Attainability Sets and Integral Funnels</title><author>Ushakov, V. N. ; Ukhobotov, V. I. ; Ushakov, A. V. ; Izmest’ev, I. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3681-19637968ebb08a4e20b25d59bcbc6ce32209b6f117a7af1e136d5b60b409e8ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Control systems</topic><topic>Differential equations</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Funnels</topic><topic>Inclusions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Nonlinear control</topic><topic>Variable structure control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ushakov, V. N.</creatorcontrib><creatorcontrib>Ukhobotov, V. I.</creatorcontrib><creatorcontrib>Ushakov, A. V.</creatorcontrib><creatorcontrib>Izmest’ev, I. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ushakov, V. N.</au><au>Ukhobotov, V. I.</au><au>Ushakov, A. V.</au><au>Izmest’ev, I. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control Systems of Variable Structure. Attainability Sets and Integral Funnels</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2022-02-02</date><risdate>2022</risdate><volume>260</volume><issue>6</issue><spage>820</spage><epage>832</epage><pages>820-832</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider a nonlinear control system in a finite-dimensional Euclidean space and on a finite time interval. The system varies over some less time interval, and the differential equation describing the system is replaced with some other differential equation. As a result, a new control system appears on the initial time interval. We study how much the integral funnel of the system is changed under such a replacement. We obtain the upper estimate for the Hausdorff distance between the integral funnels of differential inclusions related to the initial and varied systems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-022-05730-1</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2022-02, Vol.260 (6), p.820-832
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2645508581
source Springer Nature
subjects Control systems
Differential equations
Euclidean geometry
Euclidean space
Funnels
Inclusions
Mathematics
Mathematics and Statistics
Metric space
Nonlinear control
Variable structure control
title Control Systems of Variable Structure. Attainability Sets and Integral Funnels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20Systems%20of%20Variable%20Structure.%20Attainability%20Sets%20and%20Integral%20Funnels&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Ushakov,%20V.%20N.&rft.date=2022-02-02&rft.volume=260&rft.issue=6&rft.spage=820&rft.epage=832&rft.pages=820-832&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-022-05730-1&rft_dat=%3Cgale_proqu%3EA706409435%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3681-19637968ebb08a4e20b25d59bcbc6ce32209b6f117a7af1e136d5b60b409e8ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645508581&rft_id=info:pmid/&rft_galeid=A706409435&rfr_iscdi=true