Loading…
Control Systems of Variable Structure. Attainability Sets and Integral Funnels
We consider a nonlinear control system in a finite-dimensional Euclidean space and on a finite time interval. The system varies over some less time interval, and the differential equation describing the system is replaced with some other differential equation. As a result, a new control system appea...
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-02, Vol.260 (6), p.820-832 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3681-19637968ebb08a4e20b25d59bcbc6ce32209b6f117a7af1e136d5b60b409e8ed3 |
container_end_page | 832 |
container_issue | 6 |
container_start_page | 820 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 260 |
creator | Ushakov, V. N. Ukhobotov, V. I. Ushakov, A. V. Izmest’ev, I. V. |
description | We consider a nonlinear control system in a finite-dimensional Euclidean space and on a finite time interval. The system varies over some less time interval, and the differential equation describing the system is replaced with some other differential equation. As a result, a new control system appears on the initial time interval. We study how much the integral funnel of the system is changed under such a replacement. We obtain the upper estimate for the Hausdorff distance between the integral funnels of differential inclusions related to the initial and varied systems. |
doi_str_mv | 10.1007/s10958-022-05730-1 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2645508581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706409435</galeid><sourcerecordid>A706409435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3681-19637968ebb08a4e20b25d59bcbc6ce32209b6f117a7af1e136d5b60b409e8ed3</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhpfSQNKkfyAnQU89yNHH6mOPxjStIaRQt70KSTu7KKy1qaSF-t9XqQvBYIoOGsTzzDB6m-aWkhUlRN1lSjqhMWEME6E4wfRNc0VrhbXqxNtaE8Uw56q9bN7l_ESqJDW_ah43cyxpntDukAvsM5oH9NOmYN0EaFfS4suSYIXWpdgQrQtTKAe0g5KRjT3axgJjshO6X2KEKd80F4OdMrz_d183P-4_fd98wQ9fP2836wfsudQU005y1UkNzhFtW2DEMdGLznnnpQfOGOmcHChVVtmBAuWyF04S15IONPT8uvlw7Puc5l8L5GKe5iXFOtIw2QpBtND0lRrtBCbEYS7J-n3I3qwVkbVZy0Wl8BlqhAh1sTnCEOrzCb86w9fTwz74s8LHE6EyBX6X0S45m-3u2ynLjqxPc84JBvOcwt6mg6HEvERtjlGbGrX5G7V52ZMfpVzhOEJ6_Y3_WH8Aqpioew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645508581</pqid></control><display><type>article</type><title>Control Systems of Variable Structure. Attainability Sets and Integral Funnels</title><source>Springer Nature</source><creator>Ushakov, V. N. ; Ukhobotov, V. I. ; Ushakov, A. V. ; Izmest’ev, I. V.</creator><creatorcontrib>Ushakov, V. N. ; Ukhobotov, V. I. ; Ushakov, A. V. ; Izmest’ev, I. V.</creatorcontrib><description>We consider a nonlinear control system in a finite-dimensional Euclidean space and on a finite time interval. The system varies over some less time interval, and the differential equation describing the system is replaced with some other differential equation. As a result, a new control system appears on the initial time interval. We study how much the integral funnel of the system is changed under such a replacement. We obtain the upper estimate for the Hausdorff distance between the integral funnels of differential inclusions related to the initial and varied systems.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-022-05730-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Control systems ; Differential equations ; Euclidean geometry ; Euclidean space ; Funnels ; Inclusions ; Mathematics ; Mathematics and Statistics ; Metric space ; Nonlinear control ; Variable structure control</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2022-02, Vol.260 (6), p.820-832</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3681-19637968ebb08a4e20b25d59bcbc6ce32209b6f117a7af1e136d5b60b409e8ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ushakov, V. N.</creatorcontrib><creatorcontrib>Ukhobotov, V. I.</creatorcontrib><creatorcontrib>Ushakov, A. V.</creatorcontrib><creatorcontrib>Izmest’ev, I. V.</creatorcontrib><title>Control Systems of Variable Structure. Attainability Sets and Integral Funnels</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider a nonlinear control system in a finite-dimensional Euclidean space and on a finite time interval. The system varies over some less time interval, and the differential equation describing the system is replaced with some other differential equation. As a result, a new control system appears on the initial time interval. We study how much the integral funnel of the system is changed under such a replacement. We obtain the upper estimate for the Hausdorff distance between the integral funnels of differential inclusions related to the initial and varied systems.</description><subject>Control systems</subject><subject>Differential equations</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Funnels</subject><subject>Inclusions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Nonlinear control</subject><subject>Variable structure control</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rGzEQhpfSQNKkfyAnQU89yNHH6mOPxjStIaRQt70KSTu7KKy1qaSF-t9XqQvBYIoOGsTzzDB6m-aWkhUlRN1lSjqhMWEME6E4wfRNc0VrhbXqxNtaE8Uw56q9bN7l_ESqJDW_ah43cyxpntDukAvsM5oH9NOmYN0EaFfS4suSYIXWpdgQrQtTKAe0g5KRjT3axgJjshO6X2KEKd80F4OdMrz_d183P-4_fd98wQ9fP2836wfsudQU005y1UkNzhFtW2DEMdGLznnnpQfOGOmcHChVVtmBAuWyF04S15IONPT8uvlw7Puc5l8L5GKe5iXFOtIw2QpBtND0lRrtBCbEYS7J-n3I3qwVkbVZy0Wl8BlqhAh1sTnCEOrzCb86w9fTwz74s8LHE6EyBX6X0S45m-3u2ynLjqxPc84JBvOcwt6mg6HEvERtjlGbGrX5G7V52ZMfpVzhOEJ6_Y3_WH8Aqpioew</recordid><startdate>20220202</startdate><enddate>20220202</enddate><creator>Ushakov, V. N.</creator><creator>Ukhobotov, V. I.</creator><creator>Ushakov, A. V.</creator><creator>Izmest’ev, I. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20220202</creationdate><title>Control Systems of Variable Structure. Attainability Sets and Integral Funnels</title><author>Ushakov, V. N. ; Ukhobotov, V. I. ; Ushakov, A. V. ; Izmest’ev, I. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3681-19637968ebb08a4e20b25d59bcbc6ce32209b6f117a7af1e136d5b60b409e8ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Control systems</topic><topic>Differential equations</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Funnels</topic><topic>Inclusions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Nonlinear control</topic><topic>Variable structure control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ushakov, V. N.</creatorcontrib><creatorcontrib>Ukhobotov, V. I.</creatorcontrib><creatorcontrib>Ushakov, A. V.</creatorcontrib><creatorcontrib>Izmest’ev, I. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ushakov, V. N.</au><au>Ukhobotov, V. I.</au><au>Ushakov, A. V.</au><au>Izmest’ev, I. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control Systems of Variable Structure. Attainability Sets and Integral Funnels</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2022-02-02</date><risdate>2022</risdate><volume>260</volume><issue>6</issue><spage>820</spage><epage>832</epage><pages>820-832</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider a nonlinear control system in a finite-dimensional Euclidean space and on a finite time interval. The system varies over some less time interval, and the differential equation describing the system is replaced with some other differential equation. As a result, a new control system appears on the initial time interval. We study how much the integral funnel of the system is changed under such a replacement. We obtain the upper estimate for the Hausdorff distance between the integral funnels of differential inclusions related to the initial and varied systems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-022-05730-1</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2022-02, Vol.260 (6), p.820-832 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2645508581 |
source | Springer Nature |
subjects | Control systems Differential equations Euclidean geometry Euclidean space Funnels Inclusions Mathematics Mathematics and Statistics Metric space Nonlinear control Variable structure control |
title | Control Systems of Variable Structure. Attainability Sets and Integral Funnels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20Systems%20of%20Variable%20Structure.%20Attainability%20Sets%20and%20Integral%20Funnels&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Ushakov,%20V.%20N.&rft.date=2022-02-02&rft.volume=260&rft.issue=6&rft.spage=820&rft.epage=832&rft.pages=820-832&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-022-05730-1&rft_dat=%3Cgale_proqu%3EA706409435%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3681-19637968ebb08a4e20b25d59bcbc6ce32209b6f117a7af1e136d5b60b409e8ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645508581&rft_id=info:pmid/&rft_galeid=A706409435&rfr_iscdi=true |