Loading…
Remarks on some results of G. Pisier and P. Saab on convolutions
A result of G. Pisier says that a convolution operator \(\star f : M(G) \to C(G),\) where \(G\) is a compact Abelian group, can be factored through a Hilbert space if and only if \(f\) has the absolutely summable set of Fourier coefficients. P. Saab (2010) generalized this result in some directions...
Saved in:
Published in: | arXiv.org 2022-03 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Reinov, Oleg |
description | A result of G. Pisier says that a convolution operator \(\star f : M(G) \to C(G),\) where \(G\) is a compact Abelian group, can be factored through a Hilbert space if and only if \(f\) has the absolutely summable set of Fourier coefficients. P. Saab (2010) generalized this result in some directions in the vector-valued cases. We give some further generalizations of the results of G. Pisier and P. Saab, considering, in particular, the factorizations of the operators through the operators of Schatten classes in Hilbert spaces. Also, some related theorem on the factorization of operators through the operators of the Lorentz-Schatten classes are obtained. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2645689055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645689055</sourcerecordid><originalsourceid>FETCH-proquest_journals_26456890553</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCErNTSzKLlbIz1Mozs9NVShKLS7NKQHy0xTc9RQCMoszU4sUEvNSFAL0FIITE5NACpPz88ryc0pLMvPzinkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IzMTUzMLSAGgxcaoAosU37w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645689055</pqid></control><display><type>article</type><title>Remarks on some results of G. Pisier and P. Saab on convolutions</title><source>Publicly Available Content Database</source><creator>Reinov, Oleg</creator><creatorcontrib>Reinov, Oleg</creatorcontrib><description>A result of G. Pisier says that a convolution operator \(\star f : M(G) \to C(G),\) where \(G\) is a compact Abelian group, can be factored through a Hilbert space if and only if \(f\) has the absolutely summable set of Fourier coefficients. P. Saab (2010) generalized this result in some directions in the vector-valued cases. We give some further generalizations of the results of G. Pisier and P. Saab, considering, in particular, the factorizations of the operators through the operators of Schatten classes in Hilbert spaces. Also, some related theorem on the factorization of operators through the operators of the Lorentz-Schatten classes are obtained.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Group theory ; Hilbert space ; Operators</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2645689055?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Reinov, Oleg</creatorcontrib><title>Remarks on some results of G. Pisier and P. Saab on convolutions</title><title>arXiv.org</title><description>A result of G. Pisier says that a convolution operator \(\star f : M(G) \to C(G),\) where \(G\) is a compact Abelian group, can be factored through a Hilbert space if and only if \(f\) has the absolutely summable set of Fourier coefficients. P. Saab (2010) generalized this result in some directions in the vector-valued cases. We give some further generalizations of the results of G. Pisier and P. Saab, considering, in particular, the factorizations of the operators through the operators of Schatten classes in Hilbert spaces. Also, some related theorem on the factorization of operators through the operators of the Lorentz-Schatten classes are obtained.</description><subject>Group theory</subject><subject>Hilbert space</subject><subject>Operators</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCErNTSzKLlbIz1Mozs9NVShKLS7NKQHy0xTc9RQCMoszU4sUEvNSFAL0FIITE5NACpPz88ryc0pLMvPzinkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IzMTUzMLSAGgxcaoAosU37w</recordid><startdate>20220330</startdate><enddate>20220330</enddate><creator>Reinov, Oleg</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220330</creationdate><title>Remarks on some results of G. Pisier and P. Saab on convolutions</title><author>Reinov, Oleg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26456890553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Group theory</topic><topic>Hilbert space</topic><topic>Operators</topic><toplevel>online_resources</toplevel><creatorcontrib>Reinov, Oleg</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinov, Oleg</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Remarks on some results of G. Pisier and P. Saab on convolutions</atitle><jtitle>arXiv.org</jtitle><date>2022-03-30</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>A result of G. Pisier says that a convolution operator \(\star f : M(G) \to C(G),\) where \(G\) is a compact Abelian group, can be factored through a Hilbert space if and only if \(f\) has the absolutely summable set of Fourier coefficients. P. Saab (2010) generalized this result in some directions in the vector-valued cases. We give some further generalizations of the results of G. Pisier and P. Saab, considering, in particular, the factorizations of the operators through the operators of Schatten classes in Hilbert spaces. Also, some related theorem on the factorization of operators through the operators of the Lorentz-Schatten classes are obtained.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2645689055 |
source | Publicly Available Content Database |
subjects | Group theory Hilbert space Operators |
title | Remarks on some results of G. Pisier and P. Saab on convolutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Remarks%20on%20some%20results%20of%20G.%20Pisier%20and%20P.%20Saab%20on%20convolutions&rft.jtitle=arXiv.org&rft.au=Reinov,%20Oleg&rft.date=2022-03-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2645689055%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26456890553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645689055&rft_id=info:pmid/&rfr_iscdi=true |