Loading…

Remarks on some results of G. Pisier and P. Saab on convolutions

A result of G. Pisier says that a convolution operator \(\star f : M(G) \to C(G),\) where \(G\) is a compact Abelian group, can be factored through a Hilbert space if and only if \(f\) has the absolutely summable set of Fourier coefficients. P. Saab (2010) generalized this result in some directions...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-03
Main Author: Reinov, Oleg
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Reinov, Oleg
description A result of G. Pisier says that a convolution operator \(\star f : M(G) \to C(G),\) where \(G\) is a compact Abelian group, can be factored through a Hilbert space if and only if \(f\) has the absolutely summable set of Fourier coefficients. P. Saab (2010) generalized this result in some directions in the vector-valued cases. We give some further generalizations of the results of G. Pisier and P. Saab, considering, in particular, the factorizations of the operators through the operators of Schatten classes in Hilbert spaces. Also, some related theorem on the factorization of operators through the operators of the Lorentz-Schatten classes are obtained.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2645689055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645689055</sourcerecordid><originalsourceid>FETCH-proquest_journals_26456890553</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCErNTSzKLlbIz1Mozs9NVShKLS7NKQHy0xTc9RQCMoszU4sUEvNSFAL0FIITE5NACpPz88ryc0pLMvPzinkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IzMTUzMLSAGgxcaoAosU37w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645689055</pqid></control><display><type>article</type><title>Remarks on some results of G. Pisier and P. Saab on convolutions</title><source>Publicly Available Content Database</source><creator>Reinov, Oleg</creator><creatorcontrib>Reinov, Oleg</creatorcontrib><description>A result of G. Pisier says that a convolution operator \(\star f : M(G) \to C(G),\) where \(G\) is a compact Abelian group, can be factored through a Hilbert space if and only if \(f\) has the absolutely summable set of Fourier coefficients. P. Saab (2010) generalized this result in some directions in the vector-valued cases. We give some further generalizations of the results of G. Pisier and P. Saab, considering, in particular, the factorizations of the operators through the operators of Schatten classes in Hilbert spaces. Also, some related theorem on the factorization of operators through the operators of the Lorentz-Schatten classes are obtained.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Group theory ; Hilbert space ; Operators</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2645689055?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Reinov, Oleg</creatorcontrib><title>Remarks on some results of G. Pisier and P. Saab on convolutions</title><title>arXiv.org</title><description>A result of G. Pisier says that a convolution operator \(\star f : M(G) \to C(G),\) where \(G\) is a compact Abelian group, can be factored through a Hilbert space if and only if \(f\) has the absolutely summable set of Fourier coefficients. P. Saab (2010) generalized this result in some directions in the vector-valued cases. We give some further generalizations of the results of G. Pisier and P. Saab, considering, in particular, the factorizations of the operators through the operators of Schatten classes in Hilbert spaces. Also, some related theorem on the factorization of operators through the operators of the Lorentz-Schatten classes are obtained.</description><subject>Group theory</subject><subject>Hilbert space</subject><subject>Operators</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCErNTSzKLlbIz1Mozs9NVShKLS7NKQHy0xTc9RQCMoszU4sUEvNSFAL0FIITE5NACpPz88ryc0pLMvPzinkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IzMTUzMLSAGgxcaoAosU37w</recordid><startdate>20220330</startdate><enddate>20220330</enddate><creator>Reinov, Oleg</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220330</creationdate><title>Remarks on some results of G. Pisier and P. Saab on convolutions</title><author>Reinov, Oleg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26456890553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Group theory</topic><topic>Hilbert space</topic><topic>Operators</topic><toplevel>online_resources</toplevel><creatorcontrib>Reinov, Oleg</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinov, Oleg</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Remarks on some results of G. Pisier and P. Saab on convolutions</atitle><jtitle>arXiv.org</jtitle><date>2022-03-30</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>A result of G. Pisier says that a convolution operator \(\star f : M(G) \to C(G),\) where \(G\) is a compact Abelian group, can be factored through a Hilbert space if and only if \(f\) has the absolutely summable set of Fourier coefficients. P. Saab (2010) generalized this result in some directions in the vector-valued cases. We give some further generalizations of the results of G. Pisier and P. Saab, considering, in particular, the factorizations of the operators through the operators of Schatten classes in Hilbert spaces. Also, some related theorem on the factorization of operators through the operators of the Lorentz-Schatten classes are obtained.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2645689055
source Publicly Available Content Database
subjects Group theory
Hilbert space
Operators
title Remarks on some results of G. Pisier and P. Saab on convolutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Remarks%20on%20some%20results%20of%20G.%20Pisier%20and%20P.%20Saab%20on%20convolutions&rft.jtitle=arXiv.org&rft.au=Reinov,%20Oleg&rft.date=2022-03-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2645689055%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26456890553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645689055&rft_id=info:pmid/&rfr_iscdi=true