Loading…
L^3U-net: Low-Latency Lightweight U-net Based Image Segmentation Model for Parallel CNN Processors
In this research, we propose a tiny image segmentation model, L^3U-net, that works on low-resource edge devices in real-time. We introduce a data folding technique that reduces inference latency by leveraging the parallel convolutional layer processing capability of the CNN accelerators. We also dep...
Saved in:
Published in: | arXiv.org 2022-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this research, we propose a tiny image segmentation model, L^3U-net, that works on low-resource edge devices in real-time. We introduce a data folding technique that reduces inference latency by leveraging the parallel convolutional layer processing capability of the CNN accelerators. We also deploy the proposed model to such a device, MAX78000, and the results show that L^3U-net achieves more than 90% accuracy over two different segmentation datasets with 10 fps. |
---|---|
ISSN: | 2331-8422 |