Loading…
PP-YOLOE: An evolved version of YOLO
In this report, we present PP-YOLOE, an industrial state-of-the-art object detector with high performance and friendly deployment. We optimize on the basis of the previous PP-YOLOv2, using anchor-free paradigm, more powerful backbone and neck equipped with CSPRepResStage, ET-head and dynamic label a...
Saved in:
Published in: | arXiv.org 2022-12 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Xu, Shangliang Wang, Xinxin Lv, Wenyu Chang, Qinyao Cui, Cheng Deng, Kaipeng Wang, Guanzhong Dang, Qingqing Shengyu Wei Du, Yuning Lai, Baohua |
description | In this report, we present PP-YOLOE, an industrial state-of-the-art object detector with high performance and friendly deployment. We optimize on the basis of the previous PP-YOLOv2, using anchor-free paradigm, more powerful backbone and neck equipped with CSPRepResStage, ET-head and dynamic label assignment algorithm TAL. We provide s/m/l/x models for different practice scenarios. As a result, PP-YOLOE-l achieves 51.4 mAP on COCO test-dev and 78.1 FPS on Tesla V100, yielding a remarkable improvement of (+1.9 AP, +13.35% speed up) and (+1.3 AP, +24.96% speed up), compared to the previous state-of-the-art industrial models PP-YOLOv2 and YOLOX respectively. Further, PP-YOLOE inference speed achieves 149.2 FPS with TensorRT and FP16-precision. We also conduct extensive experiments to verify the effectiveness of our designs. Source code and pre-trained models are available at https://github.com/PaddlePaddle/PaddleDetection. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2645691331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645691331</sourcerecordid><originalsourceid>FETCH-proquest_journals_26456913313</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQCQjQjfT38Xe1UnDMU0gty88pS01RKEstKs7Mz1PIT1MASfIwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRmYmpmaUh0EJj4lQBAAvdLOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645691331</pqid></control><display><type>article</type><title>PP-YOLOE: An evolved version of YOLO</title><source>Publicly Available Content Database</source><creator>Xu, Shangliang ; Wang, Xinxin ; Lv, Wenyu ; Chang, Qinyao ; Cui, Cheng ; Deng, Kaipeng ; Wang, Guanzhong ; Dang, Qingqing ; Shengyu Wei ; Du, Yuning ; Lai, Baohua</creator><creatorcontrib>Xu, Shangliang ; Wang, Xinxin ; Lv, Wenyu ; Chang, Qinyao ; Cui, Cheng ; Deng, Kaipeng ; Wang, Guanzhong ; Dang, Qingqing ; Shengyu Wei ; Du, Yuning ; Lai, Baohua</creatorcontrib><description>In this report, we present PP-YOLOE, an industrial state-of-the-art object detector with high performance and friendly deployment. We optimize on the basis of the previous PP-YOLOv2, using anchor-free paradigm, more powerful backbone and neck equipped with CSPRepResStage, ET-head and dynamic label assignment algorithm TAL. We provide s/m/l/x models for different practice scenarios. As a result, PP-YOLOE-l achieves 51.4 mAP on COCO test-dev and 78.1 FPS on Tesla V100, yielding a remarkable improvement of (+1.9 AP, +13.35% speed up) and (+1.3 AP, +24.96% speed up), compared to the previous state-of-the-art industrial models PP-YOLOv2 and YOLOX respectively. Further, PP-YOLOE inference speed achieves 149.2 FPS with TensorRT and FP16-precision. We also conduct extensive experiments to verify the effectiveness of our designs. Source code and pre-trained models are available at https://github.com/PaddlePaddle/PaddleDetection.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Source code</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2645691331?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Xu, Shangliang</creatorcontrib><creatorcontrib>Wang, Xinxin</creatorcontrib><creatorcontrib>Lv, Wenyu</creatorcontrib><creatorcontrib>Chang, Qinyao</creatorcontrib><creatorcontrib>Cui, Cheng</creatorcontrib><creatorcontrib>Deng, Kaipeng</creatorcontrib><creatorcontrib>Wang, Guanzhong</creatorcontrib><creatorcontrib>Dang, Qingqing</creatorcontrib><creatorcontrib>Shengyu Wei</creatorcontrib><creatorcontrib>Du, Yuning</creatorcontrib><creatorcontrib>Lai, Baohua</creatorcontrib><title>PP-YOLOE: An evolved version of YOLO</title><title>arXiv.org</title><description>In this report, we present PP-YOLOE, an industrial state-of-the-art object detector with high performance and friendly deployment. We optimize on the basis of the previous PP-YOLOv2, using anchor-free paradigm, more powerful backbone and neck equipped with CSPRepResStage, ET-head and dynamic label assignment algorithm TAL. We provide s/m/l/x models for different practice scenarios. As a result, PP-YOLOE-l achieves 51.4 mAP on COCO test-dev and 78.1 FPS on Tesla V100, yielding a remarkable improvement of (+1.9 AP, +13.35% speed up) and (+1.3 AP, +24.96% speed up), compared to the previous state-of-the-art industrial models PP-YOLOv2 and YOLOX respectively. Further, PP-YOLOE inference speed achieves 149.2 FPS with TensorRT and FP16-precision. We also conduct extensive experiments to verify the effectiveness of our designs. Source code and pre-trained models are available at https://github.com/PaddlePaddle/PaddleDetection.</description><subject>Algorithms</subject><subject>Source code</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQCQjQjfT38Xe1UnDMU0gty88pS01RKEstKs7Mz1PIT1MASfIwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRmYmpmaUh0EJj4lQBAAvdLOo</recordid><startdate>20221212</startdate><enddate>20221212</enddate><creator>Xu, Shangliang</creator><creator>Wang, Xinxin</creator><creator>Lv, Wenyu</creator><creator>Chang, Qinyao</creator><creator>Cui, Cheng</creator><creator>Deng, Kaipeng</creator><creator>Wang, Guanzhong</creator><creator>Dang, Qingqing</creator><creator>Shengyu Wei</creator><creator>Du, Yuning</creator><creator>Lai, Baohua</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221212</creationdate><title>PP-YOLOE: An evolved version of YOLO</title><author>Xu, Shangliang ; Wang, Xinxin ; Lv, Wenyu ; Chang, Qinyao ; Cui, Cheng ; Deng, Kaipeng ; Wang, Guanzhong ; Dang, Qingqing ; Shengyu Wei ; Du, Yuning ; Lai, Baohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26456913313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Source code</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shangliang</creatorcontrib><creatorcontrib>Wang, Xinxin</creatorcontrib><creatorcontrib>Lv, Wenyu</creatorcontrib><creatorcontrib>Chang, Qinyao</creatorcontrib><creatorcontrib>Cui, Cheng</creatorcontrib><creatorcontrib>Deng, Kaipeng</creatorcontrib><creatorcontrib>Wang, Guanzhong</creatorcontrib><creatorcontrib>Dang, Qingqing</creatorcontrib><creatorcontrib>Shengyu Wei</creatorcontrib><creatorcontrib>Du, Yuning</creatorcontrib><creatorcontrib>Lai, Baohua</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shangliang</au><au>Wang, Xinxin</au><au>Lv, Wenyu</au><au>Chang, Qinyao</au><au>Cui, Cheng</au><au>Deng, Kaipeng</au><au>Wang, Guanzhong</au><au>Dang, Qingqing</au><au>Shengyu Wei</au><au>Du, Yuning</au><au>Lai, Baohua</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>PP-YOLOE: An evolved version of YOLO</atitle><jtitle>arXiv.org</jtitle><date>2022-12-12</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this report, we present PP-YOLOE, an industrial state-of-the-art object detector with high performance and friendly deployment. We optimize on the basis of the previous PP-YOLOv2, using anchor-free paradigm, more powerful backbone and neck equipped with CSPRepResStage, ET-head and dynamic label assignment algorithm TAL. We provide s/m/l/x models for different practice scenarios. As a result, PP-YOLOE-l achieves 51.4 mAP on COCO test-dev and 78.1 FPS on Tesla V100, yielding a remarkable improvement of (+1.9 AP, +13.35% speed up) and (+1.3 AP, +24.96% speed up), compared to the previous state-of-the-art industrial models PP-YOLOv2 and YOLOX respectively. Further, PP-YOLOE inference speed achieves 149.2 FPS with TensorRT and FP16-precision. We also conduct extensive experiments to verify the effectiveness of our designs. Source code and pre-trained models are available at https://github.com/PaddlePaddle/PaddleDetection.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2645691331 |
source | Publicly Available Content Database |
subjects | Algorithms Source code |
title | PP-YOLOE: An evolved version of YOLO |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=PP-YOLOE:%20An%20evolved%20version%20of%20YOLO&rft.jtitle=arXiv.org&rft.au=Xu,%20Shangliang&rft.date=2022-12-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2645691331%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26456913313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645691331&rft_id=info:pmid/&rfr_iscdi=true |