Loading…

Grain and grain boundaries influenced magnetic and dielectric properties of lanthanum-doped copper cadmium ferrites

The physical properties of La 3+ -doped Cu–Cd ferrites (CCF ferrites) were investigated with an aim to analyze the effect of large-sized La 3+ cations on the structure, morphology, magnetization, permeability, and dielectric parameters. Temperature-dependent permeability and permittivity of CCF ferr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2022-04, Vol.33 (10), p.7636-7647
Main Authors: Gore, Shyam K., Tumberphale, Umakant B., Jadhav, Santosh S., Shaikh, Shoyebmohamad F., Al-Enizi, Abdullah M., Rana, Abu ul Hassan S., Khule, Ravindra N., Raut, Siddheshwar D., Gore, Tanay S., Mane, Rajaram S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-4a56406f04f4798fc445ec7e92edc1c3f9075851902cd0d7116e1973a9d58b213
cites cdi_FETCH-LOGICAL-c319t-4a56406f04f4798fc445ec7e92edc1c3f9075851902cd0d7116e1973a9d58b213
container_end_page 7647
container_issue 10
container_start_page 7636
container_title Journal of materials science. Materials in electronics
container_volume 33
creator Gore, Shyam K.
Tumberphale, Umakant B.
Jadhav, Santosh S.
Shaikh, Shoyebmohamad F.
Al-Enizi, Abdullah M.
Rana, Abu ul Hassan S.
Khule, Ravindra N.
Raut, Siddheshwar D.
Gore, Tanay S.
Mane, Rajaram S.
description The physical properties of La 3+ -doped Cu–Cd ferrites (CCF ferrites) were investigated with an aim to analyze the effect of large-sized La 3+ cations on the structure, morphology, magnetization, permeability, and dielectric parameters. Temperature-dependent permeability and permittivity of CCF ferrites are in good agreement with locomotion of grains and grain boundaries. The CCF ferrites are synthesized by a sol–gel method. The Rietveld refinement promoted for the structural confirmation reveals the cubic spinel structure of CCF ferrites. The morphology of all ferrites investigated by surface scanning analysis images indicates the presence of cubical and triangular crystallites. The analysis of magnetic parameters of CCF ferrites measured through a high-field magnetization evidences magnetic transition from paramagnetic to ferrimagnetic phase. The magnetic permeability increases and magnetic loss decreases on enhancing La 3+ content from 0.0 to 0.20. When temperature is stepped up from 25 to 150 °C, the permeability is improved. The increase in permittivity and decrease in ac conductivity is assigned to increase of grain size and reduction of grain boundaries as explained by Maxwell–Wagner model. The magnetic and electrical performance of CCF ferrites demonstrate their potential use in microwave devices. The CCF ferrites possessing soft magnetic behavior along with low magnetic and dielectric losses are promising nanomaterials for high-frequency applications too.
doi_str_mv 10.1007/s10854-022-07912-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645694844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645694844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4a56406f04f4798fc445ec7e92edc1c3f9075851902cd0d7116e1973a9d58b213</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9EkTZrkKItfsOBFwVvIJpO1S5uuSXvw35vdCt48zdfzzgwvQteU3FJC5F2mRAmOCWOYSE0ZVidoQYWsMVfs4xQtiBYSc8HYObrIeUcIaXitFig_JdvGykZfbY_ZZpiit6mFXLUxdBNEB77q7TbC2Loj6FvowI2plPs07CGNB3oIVWfj-Gnj1GNf2r5yw75MK2d93059FSCldoR8ic6C7TJc_cYlen98eFs94_Xr08vqfo1dTfWIuRUNJ00gPHCpVXCcC3ASNAPvqKuDJlIoQTVhzhMvKW2Aallb7YXaMFov0c28t3z5NUEezW6YUiwnDWu4aDRXnBeKzZRLQ84Jgtmntrfp21BiDuaa2VxTzDVHc40qonoW5QLHLaS_1f-ofgAWD35E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645694844</pqid></control><display><type>article</type><title>Grain and grain boundaries influenced magnetic and dielectric properties of lanthanum-doped copper cadmium ferrites</title><source>Springer Nature</source><creator>Gore, Shyam K. ; Tumberphale, Umakant B. ; Jadhav, Santosh S. ; Shaikh, Shoyebmohamad F. ; Al-Enizi, Abdullah M. ; Rana, Abu ul Hassan S. ; Khule, Ravindra N. ; Raut, Siddheshwar D. ; Gore, Tanay S. ; Mane, Rajaram S.</creator><creatorcontrib>Gore, Shyam K. ; Tumberphale, Umakant B. ; Jadhav, Santosh S. ; Shaikh, Shoyebmohamad F. ; Al-Enizi, Abdullah M. ; Rana, Abu ul Hassan S. ; Khule, Ravindra N. ; Raut, Siddheshwar D. ; Gore, Tanay S. ; Mane, Rajaram S.</creatorcontrib><description>The physical properties of La 3+ -doped Cu–Cd ferrites (CCF ferrites) were investigated with an aim to analyze the effect of large-sized La 3+ cations on the structure, morphology, magnetization, permeability, and dielectric parameters. Temperature-dependent permeability and permittivity of CCF ferrites are in good agreement with locomotion of grains and grain boundaries. The CCF ferrites are synthesized by a sol–gel method. The Rietveld refinement promoted for the structural confirmation reveals the cubic spinel structure of CCF ferrites. The morphology of all ferrites investigated by surface scanning analysis images indicates the presence of cubical and triangular crystallites. The analysis of magnetic parameters of CCF ferrites measured through a high-field magnetization evidences magnetic transition from paramagnetic to ferrimagnetic phase. The magnetic permeability increases and magnetic loss decreases on enhancing La 3+ content from 0.0 to 0.20. When temperature is stepped up from 25 to 150 °C, the permeability is improved. The increase in permittivity and decrease in ac conductivity is assigned to increase of grain size and reduction of grain boundaries as explained by Maxwell–Wagner model. The magnetic and electrical performance of CCF ferrites demonstrate their potential use in microwave devices. The CCF ferrites possessing soft magnetic behavior along with low magnetic and dielectric losses are promising nanomaterials for high-frequency applications too.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-022-07912-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Crystallites ; Dielectric loss ; Dielectric properties ; Ferrites ; Grain boundaries ; Grain size ; Lanthanum ; Locomotion ; Magnetic permeability ; Magnetic properties ; Magnetic transitions ; Magnetization ; Materials Science ; Morphology ; Nanomaterials ; Optical and Electronic Materials ; Parameters ; Permeability ; Permittivity ; Physical properties ; Sol-gel processes ; Temperature dependence</subject><ispartof>Journal of materials science. Materials in electronics, 2022-04, Vol.33 (10), p.7636-7647</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4a56406f04f4798fc445ec7e92edc1c3f9075851902cd0d7116e1973a9d58b213</citedby><cites>FETCH-LOGICAL-c319t-4a56406f04f4798fc445ec7e92edc1c3f9075851902cd0d7116e1973a9d58b213</cites><orcidid>0000-0003-3256-1059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gore, Shyam K.</creatorcontrib><creatorcontrib>Tumberphale, Umakant B.</creatorcontrib><creatorcontrib>Jadhav, Santosh S.</creatorcontrib><creatorcontrib>Shaikh, Shoyebmohamad F.</creatorcontrib><creatorcontrib>Al-Enizi, Abdullah M.</creatorcontrib><creatorcontrib>Rana, Abu ul Hassan S.</creatorcontrib><creatorcontrib>Khule, Ravindra N.</creatorcontrib><creatorcontrib>Raut, Siddheshwar D.</creatorcontrib><creatorcontrib>Gore, Tanay S.</creatorcontrib><creatorcontrib>Mane, Rajaram S.</creatorcontrib><title>Grain and grain boundaries influenced magnetic and dielectric properties of lanthanum-doped copper cadmium ferrites</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The physical properties of La 3+ -doped Cu–Cd ferrites (CCF ferrites) were investigated with an aim to analyze the effect of large-sized La 3+ cations on the structure, morphology, magnetization, permeability, and dielectric parameters. Temperature-dependent permeability and permittivity of CCF ferrites are in good agreement with locomotion of grains and grain boundaries. The CCF ferrites are synthesized by a sol–gel method. The Rietveld refinement promoted for the structural confirmation reveals the cubic spinel structure of CCF ferrites. The morphology of all ferrites investigated by surface scanning analysis images indicates the presence of cubical and triangular crystallites. The analysis of magnetic parameters of CCF ferrites measured through a high-field magnetization evidences magnetic transition from paramagnetic to ferrimagnetic phase. The magnetic permeability increases and magnetic loss decreases on enhancing La 3+ content from 0.0 to 0.20. When temperature is stepped up from 25 to 150 °C, the permeability is improved. The increase in permittivity and decrease in ac conductivity is assigned to increase of grain size and reduction of grain boundaries as explained by Maxwell–Wagner model. The magnetic and electrical performance of CCF ferrites demonstrate their potential use in microwave devices. The CCF ferrites possessing soft magnetic behavior along with low magnetic and dielectric losses are promising nanomaterials for high-frequency applications too.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Crystallites</subject><subject>Dielectric loss</subject><subject>Dielectric properties</subject><subject>Ferrites</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Lanthanum</subject><subject>Locomotion</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>Magnetic transitions</subject><subject>Magnetization</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Optical and Electronic Materials</subject><subject>Parameters</subject><subject>Permeability</subject><subject>Permittivity</subject><subject>Physical properties</subject><subject>Sol-gel processes</subject><subject>Temperature dependence</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9EkTZrkKItfsOBFwVvIJpO1S5uuSXvw35vdCt48zdfzzgwvQteU3FJC5F2mRAmOCWOYSE0ZVidoQYWsMVfs4xQtiBYSc8HYObrIeUcIaXitFig_JdvGykZfbY_ZZpiit6mFXLUxdBNEB77q7TbC2Loj6FvowI2plPs07CGNB3oIVWfj-Gnj1GNf2r5yw75MK2d93059FSCldoR8ic6C7TJc_cYlen98eFs94_Xr08vqfo1dTfWIuRUNJ00gPHCpVXCcC3ASNAPvqKuDJlIoQTVhzhMvKW2Aallb7YXaMFov0c28t3z5NUEezW6YUiwnDWu4aDRXnBeKzZRLQ84Jgtmntrfp21BiDuaa2VxTzDVHc40qonoW5QLHLaS_1f-ofgAWD35E</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Gore, Shyam K.</creator><creator>Tumberphale, Umakant B.</creator><creator>Jadhav, Santosh S.</creator><creator>Shaikh, Shoyebmohamad F.</creator><creator>Al-Enizi, Abdullah M.</creator><creator>Rana, Abu ul Hassan S.</creator><creator>Khule, Ravindra N.</creator><creator>Raut, Siddheshwar D.</creator><creator>Gore, Tanay S.</creator><creator>Mane, Rajaram S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3256-1059</orcidid></search><sort><creationdate>20220401</creationdate><title>Grain and grain boundaries influenced magnetic and dielectric properties of lanthanum-doped copper cadmium ferrites</title><author>Gore, Shyam K. ; Tumberphale, Umakant B. ; Jadhav, Santosh S. ; Shaikh, Shoyebmohamad F. ; Al-Enizi, Abdullah M. ; Rana, Abu ul Hassan S. ; Khule, Ravindra N. ; Raut, Siddheshwar D. ; Gore, Tanay S. ; Mane, Rajaram S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4a56406f04f4798fc445ec7e92edc1c3f9075851902cd0d7116e1973a9d58b213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Crystallites</topic><topic>Dielectric loss</topic><topic>Dielectric properties</topic><topic>Ferrites</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Lanthanum</topic><topic>Locomotion</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>Magnetic transitions</topic><topic>Magnetization</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Optical and Electronic Materials</topic><topic>Parameters</topic><topic>Permeability</topic><topic>Permittivity</topic><topic>Physical properties</topic><topic>Sol-gel processes</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gore, Shyam K.</creatorcontrib><creatorcontrib>Tumberphale, Umakant B.</creatorcontrib><creatorcontrib>Jadhav, Santosh S.</creatorcontrib><creatorcontrib>Shaikh, Shoyebmohamad F.</creatorcontrib><creatorcontrib>Al-Enizi, Abdullah M.</creatorcontrib><creatorcontrib>Rana, Abu ul Hassan S.</creatorcontrib><creatorcontrib>Khule, Ravindra N.</creatorcontrib><creatorcontrib>Raut, Siddheshwar D.</creatorcontrib><creatorcontrib>Gore, Tanay S.</creatorcontrib><creatorcontrib>Mane, Rajaram S.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gore, Shyam K.</au><au>Tumberphale, Umakant B.</au><au>Jadhav, Santosh S.</au><au>Shaikh, Shoyebmohamad F.</au><au>Al-Enizi, Abdullah M.</au><au>Rana, Abu ul Hassan S.</au><au>Khule, Ravindra N.</au><au>Raut, Siddheshwar D.</au><au>Gore, Tanay S.</au><au>Mane, Rajaram S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain and grain boundaries influenced magnetic and dielectric properties of lanthanum-doped copper cadmium ferrites</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>33</volume><issue>10</issue><spage>7636</spage><epage>7647</epage><pages>7636-7647</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The physical properties of La 3+ -doped Cu–Cd ferrites (CCF ferrites) were investigated with an aim to analyze the effect of large-sized La 3+ cations on the structure, morphology, magnetization, permeability, and dielectric parameters. Temperature-dependent permeability and permittivity of CCF ferrites are in good agreement with locomotion of grains and grain boundaries. The CCF ferrites are synthesized by a sol–gel method. The Rietveld refinement promoted for the structural confirmation reveals the cubic spinel structure of CCF ferrites. The morphology of all ferrites investigated by surface scanning analysis images indicates the presence of cubical and triangular crystallites. The analysis of magnetic parameters of CCF ferrites measured through a high-field magnetization evidences magnetic transition from paramagnetic to ferrimagnetic phase. The magnetic permeability increases and magnetic loss decreases on enhancing La 3+ content from 0.0 to 0.20. When temperature is stepped up from 25 to 150 °C, the permeability is improved. The increase in permittivity and decrease in ac conductivity is assigned to increase of grain size and reduction of grain boundaries as explained by Maxwell–Wagner model. The magnetic and electrical performance of CCF ferrites demonstrate their potential use in microwave devices. The CCF ferrites possessing soft magnetic behavior along with low magnetic and dielectric losses are promising nanomaterials for high-frequency applications too.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-022-07912-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3256-1059</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2022-04, Vol.33 (10), p.7636-7647
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2645694844
source Springer Nature
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Copper
Crystallites
Dielectric loss
Dielectric properties
Ferrites
Grain boundaries
Grain size
Lanthanum
Locomotion
Magnetic permeability
Magnetic properties
Magnetic transitions
Magnetization
Materials Science
Morphology
Nanomaterials
Optical and Electronic Materials
Parameters
Permeability
Permittivity
Physical properties
Sol-gel processes
Temperature dependence
title Grain and grain boundaries influenced magnetic and dielectric properties of lanthanum-doped copper cadmium ferrites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain%20and%20grain%20boundaries%20influenced%20magnetic%20and%20dielectric%20properties%20of%20lanthanum-doped%20copper%20cadmium%20ferrites&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Gore,%20Shyam%20K.&rft.date=2022-04-01&rft.volume=33&rft.issue=10&rft.spage=7636&rft.epage=7647&rft.pages=7636-7647&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-022-07912-8&rft_dat=%3Cproquest_cross%3E2645694844%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-4a56406f04f4798fc445ec7e92edc1c3f9075851902cd0d7116e1973a9d58b213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645694844&rft_id=info:pmid/&rfr_iscdi=true