Loading…

Low‐order preconditioning of the Stokes equations

A well‐known strategy for building effective preconditioners for higher‐order discretizations of some PDEs, such as Poisson's equation, is to leverage effective preconditioners for their low‐order analogs. In this work, we show that high‐quality preconditioners can also be derived for the Taylo...

Full description

Saved in:
Bibliographic Details
Published in:Numerical linear algebra with applications 2022-05, Vol.29 (3), p.n/a
Main Authors: Voronin, Alexey, He, Yunhui, MacLachlan, Scott, Olson, Luke N., Tuminaro, Raymond
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2936-7b700bf6b212a13f18f590393702639d41060a616138e65a8c43524820b5fca23
cites cdi_FETCH-LOGICAL-c2936-7b700bf6b212a13f18f590393702639d41060a616138e65a8c43524820b5fca23
container_end_page n/a
container_issue 3
container_start_page
container_title Numerical linear algebra with applications
container_volume 29
creator Voronin, Alexey
He, Yunhui
MacLachlan, Scott
Olson, Luke N.
Tuminaro, Raymond
description A well‐known strategy for building effective preconditioners for higher‐order discretizations of some PDEs, such as Poisson's equation, is to leverage effective preconditioners for their low‐order analogs. In this work, we show that high‐quality preconditioners can also be derived for the Taylor–Hood discretization of the Stokes equations in much the same manner. In particular, we investigate the use of geometric multigrid based on the ℚ1isoℚ2/ℚ1 discretization of the Stokes operator as a preconditioner for the ℚ2/ℚ1 discretization of the Stokes system. We utilize local Fourier analysis to optimize the damping parameters for Vanka and Braess–Sarazin relaxation schemes and to achieve robust convergence. These results are then verified and compared against the measured multigrid performance. While geometric multigrid can be applied directly to the ℚ2/ℚ1 system, our ultimate motivation is to apply algebraic multigrid within solvers for ℚ2/ℚ1 systems via the ℚ1isoℚ2/ℚ1 discretization, which will be considered in a companion paper.
doi_str_mv 10.1002/nla.2426
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645768509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645768509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-7b700bf6b212a13f18f590393702639d41060a616138e65a8c43524820b5fca23</originalsourceid><addsrcrecordid>eNp10M9KxDAQBvAgCq6r4CMUvHjpOpk0aXNcFv9B0YN6DmmbaNfadJMuy958BJ_RJ7G1Xj3NwPz4Bj5CziksKABetY1eYILigMwoSBlTDuJw3FOIOUN-TE5CWAOA4JLNCMvd7vvzy_nK-KjzpnRtVfe1a-v2NXI26t9M9NS7dxMis9nq8RJOyZHVTTBnf3NOXm6un1d3cf54e79a5nGJkok4LVKAwooCKWrKLM0sl8AkSwEFk1VCQYAWVFCWGcF1ViaMY5IhFNyWGtmcXEy5nXebrQm9Wrutb4eXCkXCU5FxkIO6nFTpXQjeWNX5-kP7vaKgxkrUUIkaKxloPNFd3Zj9v0495Mtf_wMslGBP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645768509</pqid></control><display><type>article</type><title>Low‐order preconditioning of the Stokes equations</title><source>Wiley</source><creator>Voronin, Alexey ; He, Yunhui ; MacLachlan, Scott ; Olson, Luke N. ; Tuminaro, Raymond</creator><creatorcontrib>Voronin, Alexey ; He, Yunhui ; MacLachlan, Scott ; Olson, Luke N. ; Tuminaro, Raymond</creatorcontrib><description>A well‐known strategy for building effective preconditioners for higher‐order discretizations of some PDEs, such as Poisson's equation, is to leverage effective preconditioners for their low‐order analogs. In this work, we show that high‐quality preconditioners can also be derived for the Taylor–Hood discretization of the Stokes equations in much the same manner. In particular, we investigate the use of geometric multigrid based on the ℚ1isoℚ2/ℚ1 discretization of the Stokes operator as a preconditioner for the ℚ2/ℚ1 discretization of the Stokes system. We utilize local Fourier analysis to optimize the damping parameters for Vanka and Braess–Sarazin relaxation schemes and to achieve robust convergence. These results are then verified and compared against the measured multigrid performance. While geometric multigrid can be applied directly to the ℚ2/ℚ1 system, our ultimate motivation is to apply algebraic multigrid within solvers for ℚ2/ℚ1 systems via the ℚ1isoℚ2/ℚ1 discretization, which will be considered in a companion paper.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.2426</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>additive Vanka ; Braess–Sarazin ; Damping ; Discretization ; Fourier analysis ; local Fourier analysis ; Mathematical analysis ; monolithic multigrid ; Navier-Stokes equations ; Poisson equation ; Preconditioning ; Stokes equations</subject><ispartof>Numerical linear algebra with applications, 2022-05, Vol.29 (3), p.n/a</ispartof><rights>2021 John Wiley &amp; Sons Ltd. This article has been contributed to by US Government employees and their work is in the public domain in the USA.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-7b700bf6b212a13f18f590393702639d41060a616138e65a8c43524820b5fca23</citedby><cites>FETCH-LOGICAL-c2936-7b700bf6b212a13f18f590393702639d41060a616138e65a8c43524820b5fca23</cites><orcidid>0000-0003-1592-0339 ; 0000-0002-6364-0684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Voronin, Alexey</creatorcontrib><creatorcontrib>He, Yunhui</creatorcontrib><creatorcontrib>MacLachlan, Scott</creatorcontrib><creatorcontrib>Olson, Luke N.</creatorcontrib><creatorcontrib>Tuminaro, Raymond</creatorcontrib><title>Low‐order preconditioning of the Stokes equations</title><title>Numerical linear algebra with applications</title><description>A well‐known strategy for building effective preconditioners for higher‐order discretizations of some PDEs, such as Poisson's equation, is to leverage effective preconditioners for their low‐order analogs. In this work, we show that high‐quality preconditioners can also be derived for the Taylor–Hood discretization of the Stokes equations in much the same manner. In particular, we investigate the use of geometric multigrid based on the ℚ1isoℚ2/ℚ1 discretization of the Stokes operator as a preconditioner for the ℚ2/ℚ1 discretization of the Stokes system. We utilize local Fourier analysis to optimize the damping parameters for Vanka and Braess–Sarazin relaxation schemes and to achieve robust convergence. These results are then verified and compared against the measured multigrid performance. While geometric multigrid can be applied directly to the ℚ2/ℚ1 system, our ultimate motivation is to apply algebraic multigrid within solvers for ℚ2/ℚ1 systems via the ℚ1isoℚ2/ℚ1 discretization, which will be considered in a companion paper.</description><subject>additive Vanka</subject><subject>Braess–Sarazin</subject><subject>Damping</subject><subject>Discretization</subject><subject>Fourier analysis</subject><subject>local Fourier analysis</subject><subject>Mathematical analysis</subject><subject>monolithic multigrid</subject><subject>Navier-Stokes equations</subject><subject>Poisson equation</subject><subject>Preconditioning</subject><subject>Stokes equations</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10M9KxDAQBvAgCq6r4CMUvHjpOpk0aXNcFv9B0YN6DmmbaNfadJMuy958BJ_RJ7G1Xj3NwPz4Bj5CziksKABetY1eYILigMwoSBlTDuJw3FOIOUN-TE5CWAOA4JLNCMvd7vvzy_nK-KjzpnRtVfe1a-v2NXI26t9M9NS7dxMis9nq8RJOyZHVTTBnf3NOXm6un1d3cf54e79a5nGJkok4LVKAwooCKWrKLM0sl8AkSwEFk1VCQYAWVFCWGcF1ViaMY5IhFNyWGtmcXEy5nXebrQm9Wrutb4eXCkXCU5FxkIO6nFTpXQjeWNX5-kP7vaKgxkrUUIkaKxloPNFd3Zj9v0495Mtf_wMslGBP</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Voronin, Alexey</creator><creator>He, Yunhui</creator><creator>MacLachlan, Scott</creator><creator>Olson, Luke N.</creator><creator>Tuminaro, Raymond</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1592-0339</orcidid><orcidid>https://orcid.org/0000-0002-6364-0684</orcidid></search><sort><creationdate>202205</creationdate><title>Low‐order preconditioning of the Stokes equations</title><author>Voronin, Alexey ; He, Yunhui ; MacLachlan, Scott ; Olson, Luke N. ; Tuminaro, Raymond</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-7b700bf6b212a13f18f590393702639d41060a616138e65a8c43524820b5fca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>additive Vanka</topic><topic>Braess–Sarazin</topic><topic>Damping</topic><topic>Discretization</topic><topic>Fourier analysis</topic><topic>local Fourier analysis</topic><topic>Mathematical analysis</topic><topic>monolithic multigrid</topic><topic>Navier-Stokes equations</topic><topic>Poisson equation</topic><topic>Preconditioning</topic><topic>Stokes equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voronin, Alexey</creatorcontrib><creatorcontrib>He, Yunhui</creatorcontrib><creatorcontrib>MacLachlan, Scott</creatorcontrib><creatorcontrib>Olson, Luke N.</creatorcontrib><creatorcontrib>Tuminaro, Raymond</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voronin, Alexey</au><au>He, Yunhui</au><au>MacLachlan, Scott</au><au>Olson, Luke N.</au><au>Tuminaro, Raymond</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low‐order preconditioning of the Stokes equations</atitle><jtitle>Numerical linear algebra with applications</jtitle><date>2022-05</date><risdate>2022</risdate><volume>29</volume><issue>3</issue><epage>n/a</epage><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>A well‐known strategy for building effective preconditioners for higher‐order discretizations of some PDEs, such as Poisson's equation, is to leverage effective preconditioners for their low‐order analogs. In this work, we show that high‐quality preconditioners can also be derived for the Taylor–Hood discretization of the Stokes equations in much the same manner. In particular, we investigate the use of geometric multigrid based on the ℚ1isoℚ2/ℚ1 discretization of the Stokes operator as a preconditioner for the ℚ2/ℚ1 discretization of the Stokes system. We utilize local Fourier analysis to optimize the damping parameters for Vanka and Braess–Sarazin relaxation schemes and to achieve robust convergence. These results are then verified and compared against the measured multigrid performance. While geometric multigrid can be applied directly to the ℚ2/ℚ1 system, our ultimate motivation is to apply algebraic multigrid within solvers for ℚ2/ℚ1 systems via the ℚ1isoℚ2/ℚ1 discretization, which will be considered in a companion paper.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nla.2426</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1592-0339</orcidid><orcidid>https://orcid.org/0000-0002-6364-0684</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2022-05, Vol.29 (3), p.n/a
issn 1070-5325
1099-1506
language eng
recordid cdi_proquest_journals_2645768509
source Wiley
subjects additive Vanka
Braess–Sarazin
Damping
Discretization
Fourier analysis
local Fourier analysis
Mathematical analysis
monolithic multigrid
Navier-Stokes equations
Poisson equation
Preconditioning
Stokes equations
title Low‐order preconditioning of the Stokes equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%E2%80%90order%20preconditioning%20of%20the%20Stokes%20equations&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Voronin,%20Alexey&rft.date=2022-05&rft.volume=29&rft.issue=3&rft.epage=n/a&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.2426&rft_dat=%3Cproquest_cross%3E2645768509%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2936-7b700bf6b212a13f18f590393702639d41060a616138e65a8c43524820b5fca23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645768509&rft_id=info:pmid/&rfr_iscdi=true