Loading…
Low‐order preconditioning of the Stokes equations
A well‐known strategy for building effective preconditioners for higher‐order discretizations of some PDEs, such as Poisson's equation, is to leverage effective preconditioners for their low‐order analogs. In this work, we show that high‐quality preconditioners can also be derived for the Taylo...
Saved in:
Published in: | Numerical linear algebra with applications 2022-05, Vol.29 (3), p.n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2936-7b700bf6b212a13f18f590393702639d41060a616138e65a8c43524820b5fca23 |
---|---|
cites | cdi_FETCH-LOGICAL-c2936-7b700bf6b212a13f18f590393702639d41060a616138e65a8c43524820b5fca23 |
container_end_page | n/a |
container_issue | 3 |
container_start_page | |
container_title | Numerical linear algebra with applications |
container_volume | 29 |
creator | Voronin, Alexey He, Yunhui MacLachlan, Scott Olson, Luke N. Tuminaro, Raymond |
description | A well‐known strategy for building effective preconditioners for higher‐order discretizations of some PDEs, such as Poisson's equation, is to leverage effective preconditioners for their low‐order analogs. In this work, we show that high‐quality preconditioners can also be derived for the Taylor–Hood discretization of the Stokes equations in much the same manner. In particular, we investigate the use of geometric multigrid based on the ℚ1isoℚ2/ℚ1 discretization of the Stokes operator as a preconditioner for the ℚ2/ℚ1 discretization of the Stokes system. We utilize local Fourier analysis to optimize the damping parameters for Vanka and Braess–Sarazin relaxation schemes and to achieve robust convergence. These results are then verified and compared against the measured multigrid performance. While geometric multigrid can be applied directly to the ℚ2/ℚ1 system, our ultimate motivation is to apply algebraic multigrid within solvers for ℚ2/ℚ1 systems via the ℚ1isoℚ2/ℚ1 discretization, which will be considered in a companion paper. |
doi_str_mv | 10.1002/nla.2426 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645768509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645768509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-7b700bf6b212a13f18f590393702639d41060a616138e65a8c43524820b5fca23</originalsourceid><addsrcrecordid>eNp10M9KxDAQBvAgCq6r4CMUvHjpOpk0aXNcFv9B0YN6DmmbaNfadJMuy958BJ_RJ7G1Xj3NwPz4Bj5CziksKABetY1eYILigMwoSBlTDuJw3FOIOUN-TE5CWAOA4JLNCMvd7vvzy_nK-KjzpnRtVfe1a-v2NXI26t9M9NS7dxMis9nq8RJOyZHVTTBnf3NOXm6un1d3cf54e79a5nGJkok4LVKAwooCKWrKLM0sl8AkSwEFk1VCQYAWVFCWGcF1ViaMY5IhFNyWGtmcXEy5nXebrQm9Wrutb4eXCkXCU5FxkIO6nFTpXQjeWNX5-kP7vaKgxkrUUIkaKxloPNFd3Zj9v0495Mtf_wMslGBP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645768509</pqid></control><display><type>article</type><title>Low‐order preconditioning of the Stokes equations</title><source>Wiley</source><creator>Voronin, Alexey ; He, Yunhui ; MacLachlan, Scott ; Olson, Luke N. ; Tuminaro, Raymond</creator><creatorcontrib>Voronin, Alexey ; He, Yunhui ; MacLachlan, Scott ; Olson, Luke N. ; Tuminaro, Raymond</creatorcontrib><description>A well‐known strategy for building effective preconditioners for higher‐order discretizations of some PDEs, such as Poisson's equation, is to leverage effective preconditioners for their low‐order analogs. In this work, we show that high‐quality preconditioners can also be derived for the Taylor–Hood discretization of the Stokes equations in much the same manner. In particular, we investigate the use of geometric multigrid based on the ℚ1isoℚ2/ℚ1 discretization of the Stokes operator as a preconditioner for the ℚ2/ℚ1 discretization of the Stokes system. We utilize local Fourier analysis to optimize the damping parameters for Vanka and Braess–Sarazin relaxation schemes and to achieve robust convergence. These results are then verified and compared against the measured multigrid performance. While geometric multigrid can be applied directly to the ℚ2/ℚ1 system, our ultimate motivation is to apply algebraic multigrid within solvers for ℚ2/ℚ1 systems via the ℚ1isoℚ2/ℚ1 discretization, which will be considered in a companion paper.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.2426</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>additive Vanka ; Braess–Sarazin ; Damping ; Discretization ; Fourier analysis ; local Fourier analysis ; Mathematical analysis ; monolithic multigrid ; Navier-Stokes equations ; Poisson equation ; Preconditioning ; Stokes equations</subject><ispartof>Numerical linear algebra with applications, 2022-05, Vol.29 (3), p.n/a</ispartof><rights>2021 John Wiley & Sons Ltd. This article has been contributed to by US Government employees and their work is in the public domain in the USA.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-7b700bf6b212a13f18f590393702639d41060a616138e65a8c43524820b5fca23</citedby><cites>FETCH-LOGICAL-c2936-7b700bf6b212a13f18f590393702639d41060a616138e65a8c43524820b5fca23</cites><orcidid>0000-0003-1592-0339 ; 0000-0002-6364-0684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Voronin, Alexey</creatorcontrib><creatorcontrib>He, Yunhui</creatorcontrib><creatorcontrib>MacLachlan, Scott</creatorcontrib><creatorcontrib>Olson, Luke N.</creatorcontrib><creatorcontrib>Tuminaro, Raymond</creatorcontrib><title>Low‐order preconditioning of the Stokes equations</title><title>Numerical linear algebra with applications</title><description>A well‐known strategy for building effective preconditioners for higher‐order discretizations of some PDEs, such as Poisson's equation, is to leverage effective preconditioners for their low‐order analogs. In this work, we show that high‐quality preconditioners can also be derived for the Taylor–Hood discretization of the Stokes equations in much the same manner. In particular, we investigate the use of geometric multigrid based on the ℚ1isoℚ2/ℚ1 discretization of the Stokes operator as a preconditioner for the ℚ2/ℚ1 discretization of the Stokes system. We utilize local Fourier analysis to optimize the damping parameters for Vanka and Braess–Sarazin relaxation schemes and to achieve robust convergence. These results are then verified and compared against the measured multigrid performance. While geometric multigrid can be applied directly to the ℚ2/ℚ1 system, our ultimate motivation is to apply algebraic multigrid within solvers for ℚ2/ℚ1 systems via the ℚ1isoℚ2/ℚ1 discretization, which will be considered in a companion paper.</description><subject>additive Vanka</subject><subject>Braess–Sarazin</subject><subject>Damping</subject><subject>Discretization</subject><subject>Fourier analysis</subject><subject>local Fourier analysis</subject><subject>Mathematical analysis</subject><subject>monolithic multigrid</subject><subject>Navier-Stokes equations</subject><subject>Poisson equation</subject><subject>Preconditioning</subject><subject>Stokes equations</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10M9KxDAQBvAgCq6r4CMUvHjpOpk0aXNcFv9B0YN6DmmbaNfadJMuy958BJ_RJ7G1Xj3NwPz4Bj5CziksKABetY1eYILigMwoSBlTDuJw3FOIOUN-TE5CWAOA4JLNCMvd7vvzy_nK-KjzpnRtVfe1a-v2NXI26t9M9NS7dxMis9nq8RJOyZHVTTBnf3NOXm6un1d3cf54e79a5nGJkok4LVKAwooCKWrKLM0sl8AkSwEFk1VCQYAWVFCWGcF1ViaMY5IhFNyWGtmcXEy5nXebrQm9Wrutb4eXCkXCU5FxkIO6nFTpXQjeWNX5-kP7vaKgxkrUUIkaKxloPNFd3Zj9v0495Mtf_wMslGBP</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Voronin, Alexey</creator><creator>He, Yunhui</creator><creator>MacLachlan, Scott</creator><creator>Olson, Luke N.</creator><creator>Tuminaro, Raymond</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1592-0339</orcidid><orcidid>https://orcid.org/0000-0002-6364-0684</orcidid></search><sort><creationdate>202205</creationdate><title>Low‐order preconditioning of the Stokes equations</title><author>Voronin, Alexey ; He, Yunhui ; MacLachlan, Scott ; Olson, Luke N. ; Tuminaro, Raymond</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-7b700bf6b212a13f18f590393702639d41060a616138e65a8c43524820b5fca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>additive Vanka</topic><topic>Braess–Sarazin</topic><topic>Damping</topic><topic>Discretization</topic><topic>Fourier analysis</topic><topic>local Fourier analysis</topic><topic>Mathematical analysis</topic><topic>monolithic multigrid</topic><topic>Navier-Stokes equations</topic><topic>Poisson equation</topic><topic>Preconditioning</topic><topic>Stokes equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voronin, Alexey</creatorcontrib><creatorcontrib>He, Yunhui</creatorcontrib><creatorcontrib>MacLachlan, Scott</creatorcontrib><creatorcontrib>Olson, Luke N.</creatorcontrib><creatorcontrib>Tuminaro, Raymond</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voronin, Alexey</au><au>He, Yunhui</au><au>MacLachlan, Scott</au><au>Olson, Luke N.</au><au>Tuminaro, Raymond</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low‐order preconditioning of the Stokes equations</atitle><jtitle>Numerical linear algebra with applications</jtitle><date>2022-05</date><risdate>2022</risdate><volume>29</volume><issue>3</issue><epage>n/a</epage><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>A well‐known strategy for building effective preconditioners for higher‐order discretizations of some PDEs, such as Poisson's equation, is to leverage effective preconditioners for their low‐order analogs. In this work, we show that high‐quality preconditioners can also be derived for the Taylor–Hood discretization of the Stokes equations in much the same manner. In particular, we investigate the use of geometric multigrid based on the ℚ1isoℚ2/ℚ1 discretization of the Stokes operator as a preconditioner for the ℚ2/ℚ1 discretization of the Stokes system. We utilize local Fourier analysis to optimize the damping parameters for Vanka and Braess–Sarazin relaxation schemes and to achieve robust convergence. These results are then verified and compared against the measured multigrid performance. While geometric multigrid can be applied directly to the ℚ2/ℚ1 system, our ultimate motivation is to apply algebraic multigrid within solvers for ℚ2/ℚ1 systems via the ℚ1isoℚ2/ℚ1 discretization, which will be considered in a companion paper.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nla.2426</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1592-0339</orcidid><orcidid>https://orcid.org/0000-0002-6364-0684</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-5325 |
ispartof | Numerical linear algebra with applications, 2022-05, Vol.29 (3), p.n/a |
issn | 1070-5325 1099-1506 |
language | eng |
recordid | cdi_proquest_journals_2645768509 |
source | Wiley |
subjects | additive Vanka Braess–Sarazin Damping Discretization Fourier analysis local Fourier analysis Mathematical analysis monolithic multigrid Navier-Stokes equations Poisson equation Preconditioning Stokes equations |
title | Low‐order preconditioning of the Stokes equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%E2%80%90order%20preconditioning%20of%20the%20Stokes%20equations&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Voronin,%20Alexey&rft.date=2022-05&rft.volume=29&rft.issue=3&rft.epage=n/a&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.2426&rft_dat=%3Cproquest_cross%3E2645768509%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2936-7b700bf6b212a13f18f590393702639d41060a616138e65a8c43524820b5fca23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645768509&rft_id=info:pmid/&rfr_iscdi=true |