Loading…

Prediction of polypropylene business strategy for a petrochemical plant using a technique for order preference by similarity to an ideal solution‐based artificial neural network

The quality of polypropylene is one of the major components in the plastic industry. The quality of the polypropylene depends upon the melt flow index and the xylene solubility under the given condition such as hydrogen flow, donor flow, pressure, temperature, etc. This study investigates the use of...

Full description

Saved in:
Bibliographic Details
Published in:Polymer engineering and science 2022-04, Vol.62 (4), p.1096-1113
Main Authors: Singh, Akash, Majumder, Pinki, Bera, Uttam Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4739-ca31d50a0fbc7608c1199347ae8098f63a63d4627854749be6ef55e7f2cfa5a23
cites cdi_FETCH-LOGICAL-c4739-ca31d50a0fbc7608c1199347ae8098f63a63d4627854749be6ef55e7f2cfa5a23
container_end_page 1113
container_issue 4
container_start_page 1096
container_title Polymer engineering and science
container_volume 62
creator Singh, Akash
Majumder, Pinki
Bera, Uttam Kumar
description The quality of polypropylene is one of the major components in the plastic industry. The quality of the polypropylene depends upon the melt flow index and the xylene solubility under the given condition such as hydrogen flow, donor flow, pressure, temperature, etc. This study investigates the use of artificial neural network (ANN) modeling for the prediction of the quality of polypropylene for petrochemical plants. This study proposes an ANN model to predict the “melt flow index (MFI) and xylene solubility” as the quality of polypropylene depends upon these two factors. Hydrogen (H2) flow, pressure, temperature, and donor flow are the controlling parameters for the MFI and xylene solubility. The study proposes a new approach for the selection of the best topology using the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) multicriterion decision‐making (MCDM) process for the ANN technique. Experimental data are trained with three training algorithms each with four combinations of training functions and each with three combinations of numbers of neurons. In this study, the best model for ANN is found by the Levenberg–Marquardt backpropagation training algorithm with logarithmic sigmoid and hyperbolic tangent sigmoid transfer functions. The best topology for the ANN model for prediction is selected by using the TOPSIS method. Some sensitivity analyses are provided graphically to show the physical nature of the problem. Polypropylene production through Technique for Order Preference by Similarity to an Ideal Solution (TOSIS) based artificial neural network (ANN) modelling.
doi_str_mv 10.1002/pen.25909
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2645808280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A701548806</galeid><sourcerecordid>A701548806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4739-ca31d50a0fbc7608c1199347ae8098f63a63d4627854749be6ef55e7f2cfa5a23</originalsourceid><addsrcrecordid>eNp1ks9u1DAQxiMEEkvhwBtY4oREtk6cP86xqlqoVEHVwtnyOuOsS9YOtqOSG4_Qd-kb8SRMdlvBSot8GMnz-8bjbyZJ3mZ0mVGaHw9gl3nZ0OZZssjKgqd5xYrnyYJSlqeMc_4yeRXCLUWWlc0iebjy0BoVjbPEaTK4fhq8G6YeLJDVGIyFEEiIXkboJqKdJ5IMEL1Ta9gYJXsy9NJGMqMd5iKotTU_RtiyzrfgyeBBgwersOREgtmYXnoTJxIdkZaYFrBMcP04t_H71_1KBmiJ9NFoowzmLIx-G-Kd899fJy-07AO8eYxHybfzs6-nn9LLLx8vTk8uU1XUrEmVZFlbUkn1StUV5SrLmoYVtQROG64rJivWFlVe87Koi2YFFeiyhFrnSstS5uwoeberi47gh0IUt270Fp8UeVWUnPKc079UJ3sQxmqHZqmNCUqc1HSeAacVUukBqkOX8WPOgjZ4vccvD_B42tn1g4L3ewJkIvyMnRxDEBc31_vsh3_YpykbG0y3jmEnOVRaeRcCzlIM3mykn0RGxbx1ArdObLcO2eMde4f9Tf8HxdXZ553iDxkH280</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645808280</pqid></control><display><type>article</type><title>Prediction of polypropylene business strategy for a petrochemical plant using a technique for order preference by similarity to an ideal solution‐based artificial neural network</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Singh, Akash ; Majumder, Pinki ; Bera, Uttam Kumar</creator><creatorcontrib>Singh, Akash ; Majumder, Pinki ; Bera, Uttam Kumar</creatorcontrib><description>The quality of polypropylene is one of the major components in the plastic industry. The quality of the polypropylene depends upon the melt flow index and the xylene solubility under the given condition such as hydrogen flow, donor flow, pressure, temperature, etc. This study investigates the use of artificial neural network (ANN) modeling for the prediction of the quality of polypropylene for petrochemical plants. This study proposes an ANN model to predict the “melt flow index (MFI) and xylene solubility” as the quality of polypropylene depends upon these two factors. Hydrogen (H2) flow, pressure, temperature, and donor flow are the controlling parameters for the MFI and xylene solubility. The study proposes a new approach for the selection of the best topology using the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) multicriterion decision‐making (MCDM) process for the ANN technique. Experimental data are trained with three training algorithms each with four combinations of training functions and each with three combinations of numbers of neurons. In this study, the best model for ANN is found by the Levenberg–Marquardt backpropagation training algorithm with logarithmic sigmoid and hyperbolic tangent sigmoid transfer functions. The best topology for the ANN model for prediction is selected by using the TOPSIS method. Some sensitivity analyses are provided graphically to show the physical nature of the problem. Polypropylene production through Technique for Order Preference by Similarity to an Ideal Solution (TOSIS) based artificial neural network (ANN) modelling.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25909</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; artificial neural network ; Artificial neural networks ; Back propagation networks ; Chemical industry ; Melt flow index ; Methods ; multicriteria decision‐making ; Multiple criteria decision making ; Neural networks ; Polypropylene ; Production processes ; Quality management ; Similarity ; Solubility ; Topology ; TOPSIS ; Transfer functions ; Xylene</subject><ispartof>Polymer engineering and science, 2022-04, Vol.62 (4), p.1096-1113</ispartof><rights>2022 Society of Plastics Engineers.</rights><rights>COPYRIGHT 2022 Society of Plastics Engineers, Inc.</rights><rights>2022 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4739-ca31d50a0fbc7608c1199347ae8098f63a63d4627854749be6ef55e7f2cfa5a23</citedby><cites>FETCH-LOGICAL-c4739-ca31d50a0fbc7608c1199347ae8098f63a63d4627854749be6ef55e7f2cfa5a23</cites><orcidid>0000-0001-5426-7614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Singh, Akash</creatorcontrib><creatorcontrib>Majumder, Pinki</creatorcontrib><creatorcontrib>Bera, Uttam Kumar</creatorcontrib><title>Prediction of polypropylene business strategy for a petrochemical plant using a technique for order preference by similarity to an ideal solution‐based artificial neural network</title><title>Polymer engineering and science</title><description>The quality of polypropylene is one of the major components in the plastic industry. The quality of the polypropylene depends upon the melt flow index and the xylene solubility under the given condition such as hydrogen flow, donor flow, pressure, temperature, etc. This study investigates the use of artificial neural network (ANN) modeling for the prediction of the quality of polypropylene for petrochemical plants. This study proposes an ANN model to predict the “melt flow index (MFI) and xylene solubility” as the quality of polypropylene depends upon these two factors. Hydrogen (H2) flow, pressure, temperature, and donor flow are the controlling parameters for the MFI and xylene solubility. The study proposes a new approach for the selection of the best topology using the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) multicriterion decision‐making (MCDM) process for the ANN technique. Experimental data are trained with three training algorithms each with four combinations of training functions and each with three combinations of numbers of neurons. In this study, the best model for ANN is found by the Levenberg–Marquardt backpropagation training algorithm with logarithmic sigmoid and hyperbolic tangent sigmoid transfer functions. The best topology for the ANN model for prediction is selected by using the TOPSIS method. Some sensitivity analyses are provided graphically to show the physical nature of the problem. Polypropylene production through Technique for Order Preference by Similarity to an Ideal Solution (TOSIS) based artificial neural network (ANN) modelling.</description><subject>Algorithms</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Chemical industry</subject><subject>Melt flow index</subject><subject>Methods</subject><subject>multicriteria decision‐making</subject><subject>Multiple criteria decision making</subject><subject>Neural networks</subject><subject>Polypropylene</subject><subject>Production processes</subject><subject>Quality management</subject><subject>Similarity</subject><subject>Solubility</subject><subject>Topology</subject><subject>TOPSIS</subject><subject>Transfer functions</subject><subject>Xylene</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1ks9u1DAQxiMEEkvhwBtY4oREtk6cP86xqlqoVEHVwtnyOuOsS9YOtqOSG4_Qd-kb8SRMdlvBSot8GMnz-8bjbyZJ3mZ0mVGaHw9gl3nZ0OZZssjKgqd5xYrnyYJSlqeMc_4yeRXCLUWWlc0iebjy0BoVjbPEaTK4fhq8G6YeLJDVGIyFEEiIXkboJqKdJ5IMEL1Ta9gYJXsy9NJGMqMd5iKotTU_RtiyzrfgyeBBgwersOREgtmYXnoTJxIdkZaYFrBMcP04t_H71_1KBmiJ9NFoowzmLIx-G-Kd899fJy-07AO8eYxHybfzs6-nn9LLLx8vTk8uU1XUrEmVZFlbUkn1StUV5SrLmoYVtQROG64rJivWFlVe87Koi2YFFeiyhFrnSstS5uwoeberi47gh0IUt270Fp8UeVWUnPKc079UJ3sQxmqHZqmNCUqc1HSeAacVUukBqkOX8WPOgjZ4vccvD_B42tn1g4L3ewJkIvyMnRxDEBc31_vsh3_YpykbG0y3jmEnOVRaeRcCzlIM3mykn0RGxbx1ArdObLcO2eMde4f9Tf8HxdXZ553iDxkH280</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Singh, Akash</creator><creator>Majumder, Pinki</creator><creator>Bera, Uttam Kumar</creator><general>John Wiley &amp; Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5426-7614</orcidid></search><sort><creationdate>202204</creationdate><title>Prediction of polypropylene business strategy for a petrochemical plant using a technique for order preference by similarity to an ideal solution‐based artificial neural network</title><author>Singh, Akash ; Majumder, Pinki ; Bera, Uttam Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4739-ca31d50a0fbc7608c1199347ae8098f63a63d4627854749be6ef55e7f2cfa5a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Chemical industry</topic><topic>Melt flow index</topic><topic>Methods</topic><topic>multicriteria decision‐making</topic><topic>Multiple criteria decision making</topic><topic>Neural networks</topic><topic>Polypropylene</topic><topic>Production processes</topic><topic>Quality management</topic><topic>Similarity</topic><topic>Solubility</topic><topic>Topology</topic><topic>TOPSIS</topic><topic>Transfer functions</topic><topic>Xylene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Akash</creatorcontrib><creatorcontrib>Majumder, Pinki</creatorcontrib><creatorcontrib>Bera, Uttam Kumar</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Akash</au><au>Majumder, Pinki</au><au>Bera, Uttam Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of polypropylene business strategy for a petrochemical plant using a technique for order preference by similarity to an ideal solution‐based artificial neural network</atitle><jtitle>Polymer engineering and science</jtitle><date>2022-04</date><risdate>2022</risdate><volume>62</volume><issue>4</issue><spage>1096</spage><epage>1113</epage><pages>1096-1113</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>The quality of polypropylene is one of the major components in the plastic industry. The quality of the polypropylene depends upon the melt flow index and the xylene solubility under the given condition such as hydrogen flow, donor flow, pressure, temperature, etc. This study investigates the use of artificial neural network (ANN) modeling for the prediction of the quality of polypropylene for petrochemical plants. This study proposes an ANN model to predict the “melt flow index (MFI) and xylene solubility” as the quality of polypropylene depends upon these two factors. Hydrogen (H2) flow, pressure, temperature, and donor flow are the controlling parameters for the MFI and xylene solubility. The study proposes a new approach for the selection of the best topology using the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) multicriterion decision‐making (MCDM) process for the ANN technique. Experimental data are trained with three training algorithms each with four combinations of training functions and each with three combinations of numbers of neurons. In this study, the best model for ANN is found by the Levenberg–Marquardt backpropagation training algorithm with logarithmic sigmoid and hyperbolic tangent sigmoid transfer functions. The best topology for the ANN model for prediction is selected by using the TOPSIS method. Some sensitivity analyses are provided graphically to show the physical nature of the problem. Polypropylene production through Technique for Order Preference by Similarity to an Ideal Solution (TOSIS) based artificial neural network (ANN) modelling.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pen.25909</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5426-7614</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2022-04, Vol.62 (4), p.1096-1113
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_journals_2645808280
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
artificial neural network
Artificial neural networks
Back propagation networks
Chemical industry
Melt flow index
Methods
multicriteria decision‐making
Multiple criteria decision making
Neural networks
Polypropylene
Production processes
Quality management
Similarity
Solubility
Topology
TOPSIS
Transfer functions
Xylene
title Prediction of polypropylene business strategy for a petrochemical plant using a technique for order preference by similarity to an ideal solution‐based artificial neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A59%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20polypropylene%20business%20strategy%20for%20a%20petrochemical%20plant%20using%20a%20technique%20for%20order%20preference%20by%20similarity%20to%20an%20ideal%20solution%E2%80%90based%20artificial%20neural%20network&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Singh,%20Akash&rft.date=2022-04&rft.volume=62&rft.issue=4&rft.spage=1096&rft.epage=1113&rft.pages=1096-1113&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25909&rft_dat=%3Cgale_proqu%3EA701548806%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4739-ca31d50a0fbc7608c1199347ae8098f63a63d4627854749be6ef55e7f2cfa5a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645808280&rft_id=info:pmid/&rft_galeid=A701548806&rfr_iscdi=true