Loading…
Prediction of polypropylene business strategy for a petrochemical plant using a technique for order preference by similarity to an ideal solution‐based artificial neural network
The quality of polypropylene is one of the major components in the plastic industry. The quality of the polypropylene depends upon the melt flow index and the xylene solubility under the given condition such as hydrogen flow, donor flow, pressure, temperature, etc. This study investigates the use of...
Saved in:
Published in: | Polymer engineering and science 2022-04, Vol.62 (4), p.1096-1113 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4739-ca31d50a0fbc7608c1199347ae8098f63a63d4627854749be6ef55e7f2cfa5a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c4739-ca31d50a0fbc7608c1199347ae8098f63a63d4627854749be6ef55e7f2cfa5a23 |
container_end_page | 1113 |
container_issue | 4 |
container_start_page | 1096 |
container_title | Polymer engineering and science |
container_volume | 62 |
creator | Singh, Akash Majumder, Pinki Bera, Uttam Kumar |
description | The quality of polypropylene is one of the major components in the plastic industry. The quality of the polypropylene depends upon the melt flow index and the xylene solubility under the given condition such as hydrogen flow, donor flow, pressure, temperature, etc. This study investigates the use of artificial neural network (ANN) modeling for the prediction of the quality of polypropylene for petrochemical plants. This study proposes an ANN model to predict the “melt flow index (MFI) and xylene solubility” as the quality of polypropylene depends upon these two factors. Hydrogen (H2) flow, pressure, temperature, and donor flow are the controlling parameters for the MFI and xylene solubility. The study proposes a new approach for the selection of the best topology using the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) multicriterion decision‐making (MCDM) process for the ANN technique. Experimental data are trained with three training algorithms each with four combinations of training functions and each with three combinations of numbers of neurons. In this study, the best model for ANN is found by the Levenberg–Marquardt backpropagation training algorithm with logarithmic sigmoid and hyperbolic tangent sigmoid transfer functions. The best topology for the ANN model for prediction is selected by using the TOPSIS method. Some sensitivity analyses are provided graphically to show the physical nature of the problem.
Polypropylene production through Technique for Order Preference by Similarity to an Ideal Solution (TOSIS) based artificial neural network (ANN) modelling. |
doi_str_mv | 10.1002/pen.25909 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2645808280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A701548806</galeid><sourcerecordid>A701548806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4739-ca31d50a0fbc7608c1199347ae8098f63a63d4627854749be6ef55e7f2cfa5a23</originalsourceid><addsrcrecordid>eNp1ks9u1DAQxiMEEkvhwBtY4oREtk6cP86xqlqoVEHVwtnyOuOsS9YOtqOSG4_Qd-kb8SRMdlvBSot8GMnz-8bjbyZJ3mZ0mVGaHw9gl3nZ0OZZssjKgqd5xYrnyYJSlqeMc_4yeRXCLUWWlc0iebjy0BoVjbPEaTK4fhq8G6YeLJDVGIyFEEiIXkboJqKdJ5IMEL1Ta9gYJXsy9NJGMqMd5iKotTU_RtiyzrfgyeBBgwersOREgtmYXnoTJxIdkZaYFrBMcP04t_H71_1KBmiJ9NFoowzmLIx-G-Kd899fJy-07AO8eYxHybfzs6-nn9LLLx8vTk8uU1XUrEmVZFlbUkn1StUV5SrLmoYVtQROG64rJivWFlVe87Koi2YFFeiyhFrnSstS5uwoeberi47gh0IUt270Fp8UeVWUnPKc079UJ3sQxmqHZqmNCUqc1HSeAacVUukBqkOX8WPOgjZ4vccvD_B42tn1g4L3ewJkIvyMnRxDEBc31_vsh3_YpykbG0y3jmEnOVRaeRcCzlIM3mykn0RGxbx1ArdObLcO2eMde4f9Tf8HxdXZ553iDxkH280</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645808280</pqid></control><display><type>article</type><title>Prediction of polypropylene business strategy for a petrochemical plant using a technique for order preference by similarity to an ideal solution‐based artificial neural network</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Singh, Akash ; Majumder, Pinki ; Bera, Uttam Kumar</creator><creatorcontrib>Singh, Akash ; Majumder, Pinki ; Bera, Uttam Kumar</creatorcontrib><description>The quality of polypropylene is one of the major components in the plastic industry. The quality of the polypropylene depends upon the melt flow index and the xylene solubility under the given condition such as hydrogen flow, donor flow, pressure, temperature, etc. This study investigates the use of artificial neural network (ANN) modeling for the prediction of the quality of polypropylene for petrochemical plants. This study proposes an ANN model to predict the “melt flow index (MFI) and xylene solubility” as the quality of polypropylene depends upon these two factors. Hydrogen (H2) flow, pressure, temperature, and donor flow are the controlling parameters for the MFI and xylene solubility. The study proposes a new approach for the selection of the best topology using the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) multicriterion decision‐making (MCDM) process for the ANN technique. Experimental data are trained with three training algorithms each with four combinations of training functions and each with three combinations of numbers of neurons. In this study, the best model for ANN is found by the Levenberg–Marquardt backpropagation training algorithm with logarithmic sigmoid and hyperbolic tangent sigmoid transfer functions. The best topology for the ANN model for prediction is selected by using the TOPSIS method. Some sensitivity analyses are provided graphically to show the physical nature of the problem.
Polypropylene production through Technique for Order Preference by Similarity to an Ideal Solution (TOSIS) based artificial neural network (ANN) modelling.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25909</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; artificial neural network ; Artificial neural networks ; Back propagation networks ; Chemical industry ; Melt flow index ; Methods ; multicriteria decision‐making ; Multiple criteria decision making ; Neural networks ; Polypropylene ; Production processes ; Quality management ; Similarity ; Solubility ; Topology ; TOPSIS ; Transfer functions ; Xylene</subject><ispartof>Polymer engineering and science, 2022-04, Vol.62 (4), p.1096-1113</ispartof><rights>2022 Society of Plastics Engineers.</rights><rights>COPYRIGHT 2022 Society of Plastics Engineers, Inc.</rights><rights>2022 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4739-ca31d50a0fbc7608c1199347ae8098f63a63d4627854749be6ef55e7f2cfa5a23</citedby><cites>FETCH-LOGICAL-c4739-ca31d50a0fbc7608c1199347ae8098f63a63d4627854749be6ef55e7f2cfa5a23</cites><orcidid>0000-0001-5426-7614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Singh, Akash</creatorcontrib><creatorcontrib>Majumder, Pinki</creatorcontrib><creatorcontrib>Bera, Uttam Kumar</creatorcontrib><title>Prediction of polypropylene business strategy for a petrochemical plant using a technique for order preference by similarity to an ideal solution‐based artificial neural network</title><title>Polymer engineering and science</title><description>The quality of polypropylene is one of the major components in the plastic industry. The quality of the polypropylene depends upon the melt flow index and the xylene solubility under the given condition such as hydrogen flow, donor flow, pressure, temperature, etc. This study investigates the use of artificial neural network (ANN) modeling for the prediction of the quality of polypropylene for petrochemical plants. This study proposes an ANN model to predict the “melt flow index (MFI) and xylene solubility” as the quality of polypropylene depends upon these two factors. Hydrogen (H2) flow, pressure, temperature, and donor flow are the controlling parameters for the MFI and xylene solubility. The study proposes a new approach for the selection of the best topology using the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) multicriterion decision‐making (MCDM) process for the ANN technique. Experimental data are trained with three training algorithms each with four combinations of training functions and each with three combinations of numbers of neurons. In this study, the best model for ANN is found by the Levenberg–Marquardt backpropagation training algorithm with logarithmic sigmoid and hyperbolic tangent sigmoid transfer functions. The best topology for the ANN model for prediction is selected by using the TOPSIS method. Some sensitivity analyses are provided graphically to show the physical nature of the problem.
Polypropylene production through Technique for Order Preference by Similarity to an Ideal Solution (TOSIS) based artificial neural network (ANN) modelling.</description><subject>Algorithms</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Chemical industry</subject><subject>Melt flow index</subject><subject>Methods</subject><subject>multicriteria decision‐making</subject><subject>Multiple criteria decision making</subject><subject>Neural networks</subject><subject>Polypropylene</subject><subject>Production processes</subject><subject>Quality management</subject><subject>Similarity</subject><subject>Solubility</subject><subject>Topology</subject><subject>TOPSIS</subject><subject>Transfer functions</subject><subject>Xylene</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1ks9u1DAQxiMEEkvhwBtY4oREtk6cP86xqlqoVEHVwtnyOuOsS9YOtqOSG4_Qd-kb8SRMdlvBSot8GMnz-8bjbyZJ3mZ0mVGaHw9gl3nZ0OZZssjKgqd5xYrnyYJSlqeMc_4yeRXCLUWWlc0iebjy0BoVjbPEaTK4fhq8G6YeLJDVGIyFEEiIXkboJqKdJ5IMEL1Ta9gYJXsy9NJGMqMd5iKotTU_RtiyzrfgyeBBgwersOREgtmYXnoTJxIdkZaYFrBMcP04t_H71_1KBmiJ9NFoowzmLIx-G-Kd899fJy-07AO8eYxHybfzs6-nn9LLLx8vTk8uU1XUrEmVZFlbUkn1StUV5SrLmoYVtQROG64rJivWFlVe87Koi2YFFeiyhFrnSstS5uwoeberi47gh0IUt270Fp8UeVWUnPKc079UJ3sQxmqHZqmNCUqc1HSeAacVUukBqkOX8WPOgjZ4vccvD_B42tn1g4L3ewJkIvyMnRxDEBc31_vsh3_YpykbG0y3jmEnOVRaeRcCzlIM3mykn0RGxbx1ArdObLcO2eMde4f9Tf8HxdXZ553iDxkH280</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Singh, Akash</creator><creator>Majumder, Pinki</creator><creator>Bera, Uttam Kumar</creator><general>John Wiley & Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5426-7614</orcidid></search><sort><creationdate>202204</creationdate><title>Prediction of polypropylene business strategy for a petrochemical plant using a technique for order preference by similarity to an ideal solution‐based artificial neural network</title><author>Singh, Akash ; Majumder, Pinki ; Bera, Uttam Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4739-ca31d50a0fbc7608c1199347ae8098f63a63d4627854749be6ef55e7f2cfa5a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Chemical industry</topic><topic>Melt flow index</topic><topic>Methods</topic><topic>multicriteria decision‐making</topic><topic>Multiple criteria decision making</topic><topic>Neural networks</topic><topic>Polypropylene</topic><topic>Production processes</topic><topic>Quality management</topic><topic>Similarity</topic><topic>Solubility</topic><topic>Topology</topic><topic>TOPSIS</topic><topic>Transfer functions</topic><topic>Xylene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Akash</creatorcontrib><creatorcontrib>Majumder, Pinki</creatorcontrib><creatorcontrib>Bera, Uttam Kumar</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Akash</au><au>Majumder, Pinki</au><au>Bera, Uttam Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of polypropylene business strategy for a petrochemical plant using a technique for order preference by similarity to an ideal solution‐based artificial neural network</atitle><jtitle>Polymer engineering and science</jtitle><date>2022-04</date><risdate>2022</risdate><volume>62</volume><issue>4</issue><spage>1096</spage><epage>1113</epage><pages>1096-1113</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>The quality of polypropylene is one of the major components in the plastic industry. The quality of the polypropylene depends upon the melt flow index and the xylene solubility under the given condition such as hydrogen flow, donor flow, pressure, temperature, etc. This study investigates the use of artificial neural network (ANN) modeling for the prediction of the quality of polypropylene for petrochemical plants. This study proposes an ANN model to predict the “melt flow index (MFI) and xylene solubility” as the quality of polypropylene depends upon these two factors. Hydrogen (H2) flow, pressure, temperature, and donor flow are the controlling parameters for the MFI and xylene solubility. The study proposes a new approach for the selection of the best topology using the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) multicriterion decision‐making (MCDM) process for the ANN technique. Experimental data are trained with three training algorithms each with four combinations of training functions and each with three combinations of numbers of neurons. In this study, the best model for ANN is found by the Levenberg–Marquardt backpropagation training algorithm with logarithmic sigmoid and hyperbolic tangent sigmoid transfer functions. The best topology for the ANN model for prediction is selected by using the TOPSIS method. Some sensitivity analyses are provided graphically to show the physical nature of the problem.
Polypropylene production through Technique for Order Preference by Similarity to an Ideal Solution (TOSIS) based artificial neural network (ANN) modelling.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pen.25909</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5426-7614</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2022-04, Vol.62 (4), p.1096-1113 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_journals_2645808280 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms artificial neural network Artificial neural networks Back propagation networks Chemical industry Melt flow index Methods multicriteria decision‐making Multiple criteria decision making Neural networks Polypropylene Production processes Quality management Similarity Solubility Topology TOPSIS Transfer functions Xylene |
title | Prediction of polypropylene business strategy for a petrochemical plant using a technique for order preference by similarity to an ideal solution‐based artificial neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A59%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20polypropylene%20business%20strategy%20for%20a%20petrochemical%20plant%20using%20a%20technique%20for%20order%20preference%20by%20similarity%20to%20an%20ideal%20solution%E2%80%90based%20artificial%20neural%20network&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Singh,%20Akash&rft.date=2022-04&rft.volume=62&rft.issue=4&rft.spage=1096&rft.epage=1113&rft.pages=1096-1113&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25909&rft_dat=%3Cgale_proqu%3EA701548806%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4739-ca31d50a0fbc7608c1199347ae8098f63a63d4627854749be6ef55e7f2cfa5a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645808280&rft_id=info:pmid/&rft_galeid=A701548806&rfr_iscdi=true |