Loading…

The total quasi-steady-state for multiple alternative substrate reactions

The Michaelis–Menten–Briggs–Haldane approximation and its extension, the total quasi-steady-state approximation (tQSSA) are famous assumptions for simplification of mathematical modeling of enzyme-substrate reactions. These approximations and their validity conditions are well studied for a single s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical chemistry 2022-05, Vol.60 (5), p.841-861
Main Authors: Besya, Azimberdy, Rao, Shodhan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-953091bbbb100e9afa58540f8a3bd4415f32b3c6d51595314f2bc279b655acb83
cites cdi_FETCH-LOGICAL-c363t-953091bbbb100e9afa58540f8a3bd4415f32b3c6d51595314f2bc279b655acb83
container_end_page 861
container_issue 5
container_start_page 841
container_title Journal of mathematical chemistry
container_volume 60
creator Besya, Azimberdy
Rao, Shodhan
description The Michaelis–Menten–Briggs–Haldane approximation and its extension, the total quasi-steady-state approximation (tQSSA) are famous assumptions for simplification of mathematical modeling of enzyme-substrate reactions. These approximations and their validity conditions are well studied for a single substrate reaction system. However, the extension of these studies for the tQSSA of the general case of multiple substrate reactions is yet to be performed precisely due to the consequent non-linear expressions for tQSSA. In this paper, we introduce a linearization method for equations governing the tQSSA of multiple substrate reactions to obtain an analytical solution for the evolution of concentrations of reactants that is valid throughout the whole time period. In addition, we provide the validity conditions of the tQSSA for multiple substrate reaction systems using the singular perturbation analysis method.
doi_str_mv 10.1007/s10910-022-01339-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645878141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645878141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-953091bbbb100e9afa58540f8a3bd4415f32b3c6d51595314f2bc279b655acb83</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF19E8mjRZyuBjYMDNuA5Jm2iHTtvJTYX592as4M67uZvvHA4fQreU3FNCqgegRFOCCWOYUM41lmdoQUXFsFK6OkcLwoTGutL0El0B7AghWkm1QOvtpy_SkGxXHCYLLYbkbXPMzyZfhCEW-6lL7dj5wnbJx96m9ssXMDlI8YREb-vUDj1co4tgO_A3v3-J3p-ftqtXvHl7Wa8eN7jmkiesBc9TXb483GsbrFCiJEFZ7pqypCJw5ngtG0FFZmkZmKtZpZ0UwtZO8SW6m3vHOBwmD8nshinv6sAwWQpVKVrSTLGZquMAEH0wY2z3Nh4NJeakzMzKTFZmfpQZmUN8DkGG-w8f_6r_SX0DP9Bu-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645878141</pqid></control><display><type>article</type><title>The total quasi-steady-state for multiple alternative substrate reactions</title><source>Springer Nature</source><creator>Besya, Azimberdy ; Rao, Shodhan</creator><creatorcontrib>Besya, Azimberdy ; Rao, Shodhan</creatorcontrib><description>The Michaelis–Menten–Briggs–Haldane approximation and its extension, the total quasi-steady-state approximation (tQSSA) are famous assumptions for simplification of mathematical modeling of enzyme-substrate reactions. These approximations and their validity conditions are well studied for a single substrate reaction system. However, the extension of these studies for the tQSSA of the general case of multiple substrate reactions is yet to be performed precisely due to the consequent non-linear expressions for tQSSA. In this paper, we introduce a linearization method for equations governing the tQSSA of multiple substrate reactions to obtain an analytical solution for the evolution of concentrations of reactants that is valid throughout the whole time period. In addition, we provide the validity conditions of the tQSSA for multiple substrate reaction systems using the singular perturbation analysis method.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-022-01339-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Approximation ; Chemistry ; Chemistry and Materials Science ; Exact solutions ; Math. Applications in Chemistry ; Mathematical analysis ; Original Paper ; Perturbation methods ; Physical Chemistry ; Singular perturbation ; Steady state ; Substrates ; Theoretical and Computational Chemistry</subject><ispartof>Journal of mathematical chemistry, 2022-05, Vol.60 (5), p.841-861</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-953091bbbb100e9afa58540f8a3bd4415f32b3c6d51595314f2bc279b655acb83</citedby><cites>FETCH-LOGICAL-c363t-953091bbbb100e9afa58540f8a3bd4415f32b3c6d51595314f2bc279b655acb83</cites><orcidid>0000-0001-8840-6950 ; 0000-0002-6193-7089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Besya, Azimberdy</creatorcontrib><creatorcontrib>Rao, Shodhan</creatorcontrib><title>The total quasi-steady-state for multiple alternative substrate reactions</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>The Michaelis–Menten–Briggs–Haldane approximation and its extension, the total quasi-steady-state approximation (tQSSA) are famous assumptions for simplification of mathematical modeling of enzyme-substrate reactions. These approximations and their validity conditions are well studied for a single substrate reaction system. However, the extension of these studies for the tQSSA of the general case of multiple substrate reactions is yet to be performed precisely due to the consequent non-linear expressions for tQSSA. In this paper, we introduce a linearization method for equations governing the tQSSA of multiple substrate reactions to obtain an analytical solution for the evolution of concentrations of reactants that is valid throughout the whole time period. In addition, we provide the validity conditions of the tQSSA for multiple substrate reaction systems using the singular perturbation analysis method.</description><subject>Approximation</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Exact solutions</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical analysis</subject><subject>Original Paper</subject><subject>Perturbation methods</subject><subject>Physical Chemistry</subject><subject>Singular perturbation</subject><subject>Steady state</subject><subject>Substrates</subject><subject>Theoretical and Computational Chemistry</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcF19E8mjRZyuBjYMDNuA5Jm2iHTtvJTYX592as4M67uZvvHA4fQreU3FNCqgegRFOCCWOYUM41lmdoQUXFsFK6OkcLwoTGutL0El0B7AghWkm1QOvtpy_SkGxXHCYLLYbkbXPMzyZfhCEW-6lL7dj5wnbJx96m9ssXMDlI8YREb-vUDj1co4tgO_A3v3-J3p-ftqtXvHl7Wa8eN7jmkiesBc9TXb483GsbrFCiJEFZ7pqypCJw5ngtG0FFZmkZmKtZpZ0UwtZO8SW6m3vHOBwmD8nshinv6sAwWQpVKVrSTLGZquMAEH0wY2z3Nh4NJeakzMzKTFZmfpQZmUN8DkGG-w8f_6r_SX0DP9Bu-w</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Besya, Azimberdy</creator><creator>Rao, Shodhan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8840-6950</orcidid><orcidid>https://orcid.org/0000-0002-6193-7089</orcidid></search><sort><creationdate>20220501</creationdate><title>The total quasi-steady-state for multiple alternative substrate reactions</title><author>Besya, Azimberdy ; Rao, Shodhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-953091bbbb100e9afa58540f8a3bd4415f32b3c6d51595314f2bc279b655acb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Exact solutions</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical analysis</topic><topic>Original Paper</topic><topic>Perturbation methods</topic><topic>Physical Chemistry</topic><topic>Singular perturbation</topic><topic>Steady state</topic><topic>Substrates</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besya, Azimberdy</creatorcontrib><creatorcontrib>Rao, Shodhan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Besya, Azimberdy</au><au>Rao, Shodhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The total quasi-steady-state for multiple alternative substrate reactions</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>60</volume><issue>5</issue><spage>841</spage><epage>861</epage><pages>841-861</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>The Michaelis–Menten–Briggs–Haldane approximation and its extension, the total quasi-steady-state approximation (tQSSA) are famous assumptions for simplification of mathematical modeling of enzyme-substrate reactions. These approximations and their validity conditions are well studied for a single substrate reaction system. However, the extension of these studies for the tQSSA of the general case of multiple substrate reactions is yet to be performed precisely due to the consequent non-linear expressions for tQSSA. In this paper, we introduce a linearization method for equations governing the tQSSA of multiple substrate reactions to obtain an analytical solution for the evolution of concentrations of reactants that is valid throughout the whole time period. In addition, we provide the validity conditions of the tQSSA for multiple substrate reaction systems using the singular perturbation analysis method.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-022-01339-6</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8840-6950</orcidid><orcidid>https://orcid.org/0000-0002-6193-7089</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0259-9791
ispartof Journal of mathematical chemistry, 2022-05, Vol.60 (5), p.841-861
issn 0259-9791
1572-8897
language eng
recordid cdi_proquest_journals_2645878141
source Springer Nature
subjects Approximation
Chemistry
Chemistry and Materials Science
Exact solutions
Math. Applications in Chemistry
Mathematical analysis
Original Paper
Perturbation methods
Physical Chemistry
Singular perturbation
Steady state
Substrates
Theoretical and Computational Chemistry
title The total quasi-steady-state for multiple alternative substrate reactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20total%20quasi-steady-state%20for%20multiple%20alternative%20substrate%20reactions&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Besya,%20Azimberdy&rft.date=2022-05-01&rft.volume=60&rft.issue=5&rft.spage=841&rft.epage=861&rft.pages=841-861&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-022-01339-6&rft_dat=%3Cproquest_cross%3E2645878141%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-953091bbbb100e9afa58540f8a3bd4415f32b3c6d51595314f2bc279b655acb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645878141&rft_id=info:pmid/&rfr_iscdi=true