Loading…
The total quasi-steady-state for multiple alternative substrate reactions
The Michaelis–Menten–Briggs–Haldane approximation and its extension, the total quasi-steady-state approximation (tQSSA) are famous assumptions for simplification of mathematical modeling of enzyme-substrate reactions. These approximations and their validity conditions are well studied for a single s...
Saved in:
Published in: | Journal of mathematical chemistry 2022-05, Vol.60 (5), p.841-861 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-953091bbbb100e9afa58540f8a3bd4415f32b3c6d51595314f2bc279b655acb83 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-953091bbbb100e9afa58540f8a3bd4415f32b3c6d51595314f2bc279b655acb83 |
container_end_page | 861 |
container_issue | 5 |
container_start_page | 841 |
container_title | Journal of mathematical chemistry |
container_volume | 60 |
creator | Besya, Azimberdy Rao, Shodhan |
description | The Michaelis–Menten–Briggs–Haldane approximation and its extension, the total quasi-steady-state approximation (tQSSA) are famous assumptions for simplification of mathematical modeling of enzyme-substrate reactions. These approximations and their validity conditions are well studied for a single substrate reaction system. However, the extension of these studies for the tQSSA of the general case of multiple substrate reactions is yet to be performed precisely due to the consequent non-linear expressions for tQSSA. In this paper, we introduce a linearization method for equations governing the tQSSA of multiple substrate reactions to obtain an analytical solution for the evolution of concentrations of reactants that is valid throughout the whole time period. In addition, we provide the validity conditions of the tQSSA for multiple substrate reaction systems using the singular perturbation analysis method. |
doi_str_mv | 10.1007/s10910-022-01339-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645878141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645878141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-953091bbbb100e9afa58540f8a3bd4415f32b3c6d51595314f2bc279b655acb83</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF19E8mjRZyuBjYMDNuA5Jm2iHTtvJTYX592as4M67uZvvHA4fQreU3FNCqgegRFOCCWOYUM41lmdoQUXFsFK6OkcLwoTGutL0El0B7AghWkm1QOvtpy_SkGxXHCYLLYbkbXPMzyZfhCEW-6lL7dj5wnbJx96m9ssXMDlI8YREb-vUDj1co4tgO_A3v3-J3p-ftqtXvHl7Wa8eN7jmkiesBc9TXb483GsbrFCiJEFZ7pqypCJw5ngtG0FFZmkZmKtZpZ0UwtZO8SW6m3vHOBwmD8nshinv6sAwWQpVKVrSTLGZquMAEH0wY2z3Nh4NJeakzMzKTFZmfpQZmUN8DkGG-w8f_6r_SX0DP9Bu-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645878141</pqid></control><display><type>article</type><title>The total quasi-steady-state for multiple alternative substrate reactions</title><source>Springer Nature</source><creator>Besya, Azimberdy ; Rao, Shodhan</creator><creatorcontrib>Besya, Azimberdy ; Rao, Shodhan</creatorcontrib><description>The Michaelis–Menten–Briggs–Haldane approximation and its extension, the total quasi-steady-state approximation (tQSSA) are famous assumptions for simplification of mathematical modeling of enzyme-substrate reactions. These approximations and their validity conditions are well studied for a single substrate reaction system. However, the extension of these studies for the tQSSA of the general case of multiple substrate reactions is yet to be performed precisely due to the consequent non-linear expressions for tQSSA. In this paper, we introduce a linearization method for equations governing the tQSSA of multiple substrate reactions to obtain an analytical solution for the evolution of concentrations of reactants that is valid throughout the whole time period. In addition, we provide the validity conditions of the tQSSA for multiple substrate reaction systems using the singular perturbation analysis method.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-022-01339-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Approximation ; Chemistry ; Chemistry and Materials Science ; Exact solutions ; Math. Applications in Chemistry ; Mathematical analysis ; Original Paper ; Perturbation methods ; Physical Chemistry ; Singular perturbation ; Steady state ; Substrates ; Theoretical and Computational Chemistry</subject><ispartof>Journal of mathematical chemistry, 2022-05, Vol.60 (5), p.841-861</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-953091bbbb100e9afa58540f8a3bd4415f32b3c6d51595314f2bc279b655acb83</citedby><cites>FETCH-LOGICAL-c363t-953091bbbb100e9afa58540f8a3bd4415f32b3c6d51595314f2bc279b655acb83</cites><orcidid>0000-0001-8840-6950 ; 0000-0002-6193-7089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Besya, Azimberdy</creatorcontrib><creatorcontrib>Rao, Shodhan</creatorcontrib><title>The total quasi-steady-state for multiple alternative substrate reactions</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>The Michaelis–Menten–Briggs–Haldane approximation and its extension, the total quasi-steady-state approximation (tQSSA) are famous assumptions for simplification of mathematical modeling of enzyme-substrate reactions. These approximations and their validity conditions are well studied for a single substrate reaction system. However, the extension of these studies for the tQSSA of the general case of multiple substrate reactions is yet to be performed precisely due to the consequent non-linear expressions for tQSSA. In this paper, we introduce a linearization method for equations governing the tQSSA of multiple substrate reactions to obtain an analytical solution for the evolution of concentrations of reactants that is valid throughout the whole time period. In addition, we provide the validity conditions of the tQSSA for multiple substrate reaction systems using the singular perturbation analysis method.</description><subject>Approximation</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Exact solutions</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical analysis</subject><subject>Original Paper</subject><subject>Perturbation methods</subject><subject>Physical Chemistry</subject><subject>Singular perturbation</subject><subject>Steady state</subject><subject>Substrates</subject><subject>Theoretical and Computational Chemistry</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcF19E8mjRZyuBjYMDNuA5Jm2iHTtvJTYX592as4M67uZvvHA4fQreU3FNCqgegRFOCCWOYUM41lmdoQUXFsFK6OkcLwoTGutL0El0B7AghWkm1QOvtpy_SkGxXHCYLLYbkbXPMzyZfhCEW-6lL7dj5wnbJx96m9ssXMDlI8YREb-vUDj1co4tgO_A3v3-J3p-ftqtXvHl7Wa8eN7jmkiesBc9TXb483GsbrFCiJEFZ7pqypCJw5ngtG0FFZmkZmKtZpZ0UwtZO8SW6m3vHOBwmD8nshinv6sAwWQpVKVrSTLGZquMAEH0wY2z3Nh4NJeakzMzKTFZmfpQZmUN8DkGG-w8f_6r_SX0DP9Bu-w</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Besya, Azimberdy</creator><creator>Rao, Shodhan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8840-6950</orcidid><orcidid>https://orcid.org/0000-0002-6193-7089</orcidid></search><sort><creationdate>20220501</creationdate><title>The total quasi-steady-state for multiple alternative substrate reactions</title><author>Besya, Azimberdy ; Rao, Shodhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-953091bbbb100e9afa58540f8a3bd4415f32b3c6d51595314f2bc279b655acb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Exact solutions</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical analysis</topic><topic>Original Paper</topic><topic>Perturbation methods</topic><topic>Physical Chemistry</topic><topic>Singular perturbation</topic><topic>Steady state</topic><topic>Substrates</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besya, Azimberdy</creatorcontrib><creatorcontrib>Rao, Shodhan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Besya, Azimberdy</au><au>Rao, Shodhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The total quasi-steady-state for multiple alternative substrate reactions</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>60</volume><issue>5</issue><spage>841</spage><epage>861</epage><pages>841-861</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>The Michaelis–Menten–Briggs–Haldane approximation and its extension, the total quasi-steady-state approximation (tQSSA) are famous assumptions for simplification of mathematical modeling of enzyme-substrate reactions. These approximations and their validity conditions are well studied for a single substrate reaction system. However, the extension of these studies for the tQSSA of the general case of multiple substrate reactions is yet to be performed precisely due to the consequent non-linear expressions for tQSSA. In this paper, we introduce a linearization method for equations governing the tQSSA of multiple substrate reactions to obtain an analytical solution for the evolution of concentrations of reactants that is valid throughout the whole time period. In addition, we provide the validity conditions of the tQSSA for multiple substrate reaction systems using the singular perturbation analysis method.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-022-01339-6</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8840-6950</orcidid><orcidid>https://orcid.org/0000-0002-6193-7089</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0259-9791 |
ispartof | Journal of mathematical chemistry, 2022-05, Vol.60 (5), p.841-861 |
issn | 0259-9791 1572-8897 |
language | eng |
recordid | cdi_proquest_journals_2645878141 |
source | Springer Nature |
subjects | Approximation Chemistry Chemistry and Materials Science Exact solutions Math. Applications in Chemistry Mathematical analysis Original Paper Perturbation methods Physical Chemistry Singular perturbation Steady state Substrates Theoretical and Computational Chemistry |
title | The total quasi-steady-state for multiple alternative substrate reactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20total%20quasi-steady-state%20for%20multiple%20alternative%20substrate%20reactions&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Besya,%20Azimberdy&rft.date=2022-05-01&rft.volume=60&rft.issue=5&rft.spage=841&rft.epage=861&rft.pages=841-861&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-022-01339-6&rft_dat=%3Cproquest_cross%3E2645878141%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-953091bbbb100e9afa58540f8a3bd4415f32b3c6d51595314f2bc279b655acb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645878141&rft_id=info:pmid/&rfr_iscdi=true |